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Abstract
Real world applications make heavy use of powerful libraries

and frameworks, posing a significant challenge for static anal-

ysis as the library implementation may be very complex or

unavailable. Thus, obtaining specifications that summarize

the behaviors of the library is important as it enables static

analyzers to precisely track the effects of APIs on the client

program, without requiring the actual API implementation.

In this work, we propose a novel method for discover-

ing aliasing specifications of APIs by learning from a large

dataset of programs. Unlike prior work, our method does

not require manual annotation, access to the library’s source

code or ability to run its APIs. Instead, it learns specifica-

tions in a fully unsupervised manner, by statically observing

usages of APIs in the dataset. The core idea is to learn a prob-

abilistic model of interactions between API methods and

aliasing objects, enabling identification of additional likely

aliasing relations, and to then infer aliasing specifications of

APIs that explain these relations. The learned specifications

are then used to augment an API-aware points-to analysis.

We implemented our approach in a tool called USpec and
used it to automatically learn aliasing specifications from

millions of source code files. USpec learned over 2000 spec-

ifications of various Java and Python APIs, in the process

improving the results of the points-to analysis and its clients.

CCS Concepts • Theory of computation → Program
specifications; •Computingmethodologies→ Unsuper-
vised learning.

Keywords big code, unsupervised machine learning, speci-

fication, pointer analysis
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1 Introduction
The widespread use of complex libraries and frameworks

in modern programs poses a significant challenge for static

analysis [26]. This challenge persists because of two difficul-

ties. First, analyzing a program by including the source code

of all libraries used by the program is typically infeasible.

Second, while it would be ideal for static analyzers to know

clean specifications summarizing library semantics, man-

ually crafting such specifications is very costly due to the

sheer number, diversity and intricacies of modern libraries.

Indeed, many works have addressed the challenge of auto-

matically inferring specifications [2, 5, 7, 15, 17, 19, 23, 28, 33],

including descriptions of points-to effects [6]. In particular,

obtaining quality API aliasing specifications is crucial as

points-to analysis is a core component of state-of-the-art

static reasoning systems and its results are often used down-

stream, e.g., for tasks such as vulnerability finding [18]. Thus,
any method improving the results of points-to and alias anal-

ysis is likely to have a positive effect on the entire pipeline.

While techniques vary, current approaches require either

the library’s code [12, 20] or black-box access to its APIs and

ability to execute dynamic traces on that API [6].

Unsupervised learning of aliasing specifications In this

work, we present a novel method that automatically infers

useful API aliasing specifications by learning from a large

corpus of programs that use these APIs. In contrast to previ-

ous work, our approach only relies on statically observing

usages of APIs, and does not require dynamically running

tests against the API or knowing its implementation.

Our method is based on two key insights. First, since in-

teractions between objects and APIs often follow similar

patterns in real world code, we train a probabilistic model ϕ
on a large dataset of programs so to capture these interac-

tions. Second, we use the modelϕ to identify additional likely

aliasing relations, namely those that lead to API interactions

https://doi.org/10.1145/3314221.3314640
https://doi.org/10.1145/3314221.3314640
https://doi.org/10.1145/3314221.3314640
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that are more likely according toϕ. We then extrapolate from

these relations in order to infer API aliasing specifications.

The resulting specifications induce additional aliasing, be-

yond the high probability relations already identified by ϕ.
As the inferred specifications are interpretable, they can be

directly examined by an expert or used to improve the results

of classic points-to analyzers [3].

We implemented our method in a tool called USpec (un-
supervised specification learning) and evaluated it for both

Java and Python. Using millions of source code files from

public repositories, USpec was able to automatically infer

more than 2000 API aliasing specifications, spanning non-

standard libraries such as the Jackson JSON library
1
and

Android specific APIs such as SparseArray
2
. Integrating the

inferred specifications into an API-aware may-alias analysis

improved both its results as well as those of client analyses.

Main contributions Our main contributions are:

• A method for creating a probabilistic model of API-

object interactions learned over a large dataset of pro-

grams interacting with APIs (§3–4).

• An approach for inferring practical API aliasing speci-

fications based on the probabilistic model (§5).

• An augmented API-aware may-alias analysis which

integrates the learned aliasing API specifications (§6).

• A complete implementation and evaluation of our

method in a tool called USpec. We extensively eval-

uated USpec on both Java and Python, indicating that

it can find interesting and practically useful aliasing

specifications beyond the reach of prior work (§7).

2 Overview
We now provide an overview of our approach for learning

likely API aliasing specifications, illustrated in Fig. 1.

Input Our method takes as input a large dataset of pro-

grams which make calls to API methods. Such a dataset can

be obtained from public open-source code repositories (e.g.,
GitHub). In the figure, we show a sample input program that

includes several API method calls. For example, the program

calls methods put and get of the Java HashMap API.

Extracting API unaware event graphs Each input pro-

gram is processed using a static context-sensitive points-to

analysis to obtain the event graph of the program (§3). In par-

ticular, this analysis is unaware of aliasing relations induced

by API methods and hence, to maintain precision, assumes

that return values of API calls do not alias with other objects.

Nodes of the constructed event graph represent usages

of (abstract) objects in API methods, while edges capture

aliasing relations. For instance, the event graph for the code

snippet in Fig. 1 includes a node of the form ⟨getFile, ret⟩

1https://github.com/FasterXML/jackson
2https://developer.android.com/reference/android/util/SparseArray

indicating the return value of the call to getFile, and a node
of the form ⟨put, 2⟩ indicating the second argument of the

call to put. These two nodes are connected by a directed

edge to indicate that the return value of getFile (the object
pointed to by f) is used as a second argument to put.

Learning a probabilistic event graph model In the next

step, we use the large set of event graphs obtained previously

to learn a probabilistic model over event graph edges (§4).

That is, we train a machine learning model which, given a

pair of events and a feature describing the local surroundings

of the events in the graph, returns the probability that the

two events are connected by an edge.

Key insight: finding additional aliasing relations One

of the key insights of our work is that this model also assigns

high probability to some event pairs not connected by an

edge. This is possible if the way in which a pair of objects

is used in API methods suggests that these objects should

alias. For example, assume that in the training data set, the

function getName is often called using the return value of

getFile as a receiver, such as in db.getFile().getName()
(not shown in Fig. 1). As a result, the model might assign a

high probability to the potential edge a→ b (i.e., a and b are
considered to likely alias) in the following snippet

a = database.getFile (); ... c = b.getName ();

Similarly, the model might assign high probability to a poten-

tial edge f→ x for the code snippet in Fig. 1, though it does

not exist in the event graph. Due to put and get, aliasing
indeed does occur, hence such an edge would be desirable.

Such a model is already helpful and can be used to infer

new aliasing relations. However, this only makes sense for

adding the few edges with highest confidence as typically,

the proportion of non-aliasing variables is very large. Even

in this case, it is likely the model will sometimes be confident

that an inexistent edge exists, leading to a high false positive

rate (§7.2). We believe this is a general problem of machine

learning models predicting anomalous events. For example,

similar issues occur for other tasks [1, 21], where the predic-

tion accuracy on variable selection is > 85%, but as variable

misuse bugs are rare, the true positive rate on the actual

bug finding task is much worse. To address this problem, we

focus on a restricted set of edges induced by a set of candi-

date specifications, thereby changing the distribution to one

where most edges are likely to exist. The probabilistic model

is used to only score those edges, allowing us to obtain the

API specifications best explaining the model.

Learning likelyAPI aliasing specifications To learnAPI

specifications, we consider a particular hypothesis class cap-

tured by two general patterns: RetSame(s ) describes that
method s returns the same value when being called with

equal argumentsmultiple times, and RetArg(t , s,x ) describes
that method t returns the x-th argument of a preceding call

https://github.com/FasterXML/jackson
https://developer.android.com/reference/android/util/SparseArray
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Figure 1. Overview of our approach for learning likely API aliasing specifications from a large dataset of programs.

to s if all other arguments are identical. As we will see, these

patterns allow us to learn powerful aliasing specifications.

As a first step, we find all places in the event graph where

the patterns above match, resulting in a set of candidate

specifications (§5.1). For example, in the snippet of Fig. 1, the

calls to put and get match the RetArg pattern and yield the

candidate specification RetArg(get, put, 2). Naturally, each
such candidate introduces new aliasing relations and edges

to the event graph. For example, the specification above

induces the edge f → x. At the end of this step, we obtain

a set of new induced edges in the graph together with the

originating candidate specifications (dashed edges in Fig. 1).

In the next step, we use the previously trained probabilistic

model to score candidate specifications (§5.2). For each can-

didate, we query the model for its induced edges and obtain

a score for that specification. For example, the specification

RetArg(get, put, 2) might be assigned a high score as its in-

duced edge for the shown code snippet is assigned a high

probability. Using a threshold on the scores, we finally select

the final specifications from the set of candidates (§5.3).

In §6, we show how to augment an Andersen-style points-

to analysis [3] with these specifications in order to obtain

an API aware may-alias analysis.

Examples of learned API specifications Applying our

approach to millions of source code files (§7.1) allowed us to

infer around 2000 API aliasing specifications, many of which

are interesting and not immediately obvious. For example:

RetSame(android.view.ViewGroup.findViewById)
Calling findViewById with same id returns aliasing objects

RetSame(com.fasterxml.jackson.databind.JsonNode.path)
Calling path with same argument returns aliasing objects

RetArg(get, put, 2) for android.util.SparseArray
Calling get returns second arg. of preceeding put with equal key

Learning these specifications by means of static analysis and

summarization [12, 26] of a library’s implementation is be-

yond the reach of current fully automated techniques. For

example, android.util.SparseArray is internally imple-

mented with multiple arrays and binary search. Similarly,

dictionary collections are implemented either as hash tables

or trees. Analyzing these will require a non-trivial combina-

tion of numerical domains [29] and shape analysis [27].

3 Constructing Event Graphs
In this section, we present the notion of an event graph—an
abstraction of object-API interactions. Event graphs will be

used later in order to build a probabilistic model over edges.

3.1 Events and Concrete Histories
Our event graph model is based on the concept of object

histories introduced by [25]. We next summarize this concept.

Consider an object-oriented programming languagewhose

state ⟨L, ρ,π ⟩ consists of (i) a set L of allocated objects, (ii) a

function ρ assigning values to local variables, and (iii) a func-
tion π assigning values to fields of objects in L. The concrete
semantics of the programming language defines transitions

between program states according to the usual rules.

Let P be a program performing calls to external API li-

braries (e.g., to interfaces whose implementations are not

available) at different call sites. A call sitem comprises the

respective method call statement in P and its calling context

(a sequence of method calls reaching the call site). The fully

qualified method name and signature of the function called

atm is the method identifier form, denoted id(m). We use

nargs(m) to denote the number of arguments of id(m).
Let o be an object allocated in P andM be the set of all

call sites in P . One can track the interactions of o with API

methods by recording events. An event is a pair ⟨m,x⟩ of
a call site m ∈ M and a position x ∈ Pos, where Pos :=

N ∪ {ret} for a special value “ret”. Here, x takes (i) a value in

{1, . . . , nargs(m)} if o is passed as the x-th argument tom,

(ii) the value 0 if o is the receiver ofm, or (iii) the value “ret”

ifm returns o. The sequence of events for o is the history of o.
The set of histories isH := (M × Pos)∗.
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Map <String , File > map = new HashMap <>();

map.put("key": s1, someApi.getFile (): o1);
String name = map.get("key": s2): o2.getName ();

map { (⟨newMap, ret⟩, ⟨put, 0⟩, ⟨get, 0⟩) }

s1 "key" { (⟨lc1, ret⟩, ⟨put, 1⟩) }

o1 { (⟨getFile, ret⟩, ⟨put, 2⟩) }

s2 "key" { (⟨lc2, ret⟩, ⟨get, 1⟩) }

o2 { (⟨get, ret⟩, ⟨getName, 0⟩) }

name { (⟨getName, ret⟩) }

Figure 2. Example code snippet (top) and abstract histories

(bottom). The gray annotations identifying literals and return

values are not part of the source code.

To capture the events an object participates in, we intro-

duce the function his : L → H assinging histories to objects.

Then, at each call site, the histories of all involved objects are

extended accordingly. Note that a call sitem may generate

potentially multiple events: ⟨m, 0⟩ for the receiver object,

⟨m, ret⟩ for the returned object (if any), and events for any

function arguments. In contrast to [25], we introduce an

event of the form ⟨newT, ret⟩ at allocation statements for

objects of type T (e.g., at t = new T()). For each occurrence

of a literal in the program (e.g., string literals), we introduce

a literal construction event of the form ⟨lci , ret⟩.

3.2 Points-to Analysis and Abstract Histories
We now discuss our starting aliasing assumptions on the

points-to analysis as well as the resulting abstract histories.

Modeling API effects on aliasing Using a static points-to

analysis such as [3], the potentially infinite set of dynamically

allocated objects can be partitioned into a bounded set of

abstract objects [25]. A key point here is to decide how to

model API invocations. On one side, we can conservatively

assume that return values of API method calls alias with all

other objects. Unfortunately, while sound, such an analysis is

too imprecise in practice. Alternatively, we can assume that

the returned value always corresponds to a fresh object, and

hence this value never aliases with any other abstract object.

Such an assumption is unsound, however, it leads to much

better precision in practice. In our work, we start with the

latter assumption and then selectively add aliasing relations

for which we have sufficient confidence, therebymaintaining

precision of the analysis while increasing points-to coverage.

Abstract histories Once we have performed the points-to

analysis under the assumption that return values of APIs

never alias with any other object, we can use the resulting

abstract objects to construct their abstract histories [25].
An abstract history naturally lifts the concept of a con-

crete history and has the form his : L → P (H ), where each
abstract object is assigned a set of concrete histories h ⊆ H .

Figure 3. Solid arrows: event graph for code snippet in Fig. 2.
Dashed arrows: added edges after identifying that o1 = o2
due to an aliasing specification of the HashMap API.

Then, at a call site involving an object, all concrete histo-
ries in the abstract history of the object are extended by

the appropriate event. In practice, to bound the length of a

history, we perform single loop unrolling. At control-flow

joins, abstract histories are joined via set union.

Example of abstract histories Consider the example code

snippet in Fig. 2 (top). The snippet involves six abstract ob-

jects, including two string literals (s1, s2) and two objects

returned by API methods (o1, o2). Note that as discussed

above, we assume that objects o1 and o2 are different.
The histories of the abstract objects are shown in Fig. 2

(bottom), where we use method names to indicate the unique

call sites of the methods. For example, the object map is used

as a receiver of put and get after it was constructed. String

literals si are constructed in literal constructors lci .

3.3 Event Graph
We now define the event graph of a program. The abstract

histories of all events in a program P induce a directed graph

GP = (V ,E), whereV is the set of events in P and E encodes

the ordering of events for the same abstract object. More

precisely, E contains a directed edge (e1, e2) iff e1 and e2 occur
in the same history of an object o and for all histories of o
where both events are present, e1 occurs before e2. We refer

to GP as the event graph of P .
Fig. 3 (solid arrows) shows the event graph for the code

snippet in Fig. 2. Here, the nodes represent events while a

rectangular region represents a call site with all events stem-

ming from that site. For example, the shaded node represents

the event e1 = ⟨getName, 0⟩.
The edges in GP essentially model information flow be-

tween call sites in P . Note that by construction, the edges

of an event graph form a transitive closure. If the points-to

analysis is precise enough, the resulting event graph is typi-

cally robust to common code refactorings such as renamings,

extractions and inlinings, as long as the same APIs are called.

Next, we inspect how an event graph describes points-to

sets and thereby represents may-alias information.
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Allocation events Let parentsG (e ) = {e
′ | (e ′, e ) ∈ E}

denote the set of parents of an event e ∈ V . Note that

parentsG (e ) = ∅ for an event e iff a new abstract object

is allocated at e , in which case e is called an allocation event.
We define the function allocG : V → P (V ) assigning to each
event the set of allocation events of the respective object:

allocG (e ) :=

{
e ′

�����
∃m. e ′ = ⟨m, ret⟩ ∧ parentsG (e

′) = ∅
∧ e ′ ∈ parentsG (e ) ∪ {e}

}
.

The set allocG (e ) thus represents the points-to set associated
with event e . As usual, two events e , e ′ are considered to

may-alias iff allocG (e ) ∩ allocG (e
′) , ∅.

For instance, in the event graph G in Fig. 3, allocG (e1) =
{⟨get, ret⟩} = allocG (⟨get, ret⟩). This describes that the re-
ceiver of getName may alias with the return value of get.

Introducing aliasingwith specifications Recall that the

analysis of §3.1 assumes that a new abstract object is returned

for each API method call. However, the semantics of APIs

might well introduce aliasing relations. For example, in the

case of HashMap, calling get(k) after put(k,o) returns o.
Consider again the code snippet of Fig. 2. An analysis

aware of this API specification would identify that o1 and o2
are in fact the same object and thus their abstract histories

would be merged into the following abstract history:

{(⟨getFile, ret⟩, ⟨put, 2⟩, ⟨get, ret⟩, ⟨getName, 0⟩)}.

As a result, more edges will be added to the event graph

(see all dashed arrows in Fig. 3 including ℓ), which would

increase precision. Our goal will be to discover such API

aliasing specifications.

In the next section, we introduce a probabilistic model

over event graph edges which enables us to identify likely

aliasing of events. Then, in §5, we use this probabilistic model

in order to discover likely API specifications.

4 Probabilistic Event Graph Model
We now introduce our probabilistic model of event graph

edges. This model is typically learned from a large dataset of

available programs and aims to capture the likelihood that

an aliasing relation between two events exists. In §4.1, we de-

scribe a machine learning model that returns the probability

of an edge being present between two events, given a fea-

ture describing the surroundings of the events in the graph.

We show how to obtain training data for this model in §4.2.

In §4.3, we discuss how such a model can give rise to new

event graph edges inducing additional aliasing relations—an

idea we use when learning API aliasing specifications in §5.

4.1 Event Pair Classification
Next, we describe our machine learning model classifying

pairs of events into two classes (0 or 1) representing whether

or not two events are connected by an edge.

Features We define a pathp = (e1, . . . , ek ) to be a sequence
of events such that each two consecutive events ei , ei+1 are
connected by an edge in E, that is, (ei , ei+1) ∈ E. Here, k = |p |
is the length of the path. Let PathsG be the set of all paths

in an event graph G. The set of all paths of length at most k
that include an event e ∈ V is defined as the context of e:

ctxG,k (e ) := {p | p ∈ PathsG ∧ e ∈ p ∧ |p | ≤ k }.

For example, in Fig. 3, ctxG,2 (e1) = {(⟨get, ret⟩, e1)}.
The feature ftr(e1, e2) of an event pair (e1, e2) is defined as

the following tuple, where ei = ⟨mi ,xi ⟩:

ftr(e1, e2) = (x1,x2, ctxG,2 (e1), ctxG,2 (e2),γ (e1, e2)).

Here, γ (e1, e2) represents additional information that (i) cap-

tures types of method arguments inm1 andm2, and (ii) re-

lates m1 and m2 to guarding control-flow conditions. The

features ftr were empirically shown to perform well for the

task considered in this work (see §7.2).

Model Wenowdefine ourmachine learningmodelϕ, where
ϕ (ftr(e1, e2)) returns the probability that (e1, e2) ∈ E. In our

work, we use an individual logistic regression model for each

pair of argument positions. More precisely, it is

ϕ (ftr(e1, e2)) = ϕ ((x1,x2, c1, c2,d )) = ψ (x1,x2 ) (c1, c2,d ),

whereψ (x1,x2 ) is a logistic regression model (see §7.1).

4.2 Obtaining Training Data
In order to obtain positive training samples, we extract all

edges from a large set of event graphs. For each extracted

edge (e1, e2), we record the sample (ftr(e1, e2), 1). Here, we
modify ftr(e1, e2) to ensure that there is no path between e1
and e2 in the union of their contexts. That is, we may remove

some paths from both contexts, including the edge between

e1 and e2. This ensures our model does not simply learn to

predict the transitive closure.

Negative training samples are obtained from non-existent

edges. Since most pairs of events are not connected by an

edge, we use a subsampling approach to obtain sets of posi-

tive and negative samples with similar size. More precisely,

to obtain negative samples of the form (ftr(e1, e2), 0), we
sample pairs of events (e1, e2) that occur in the same calling

context but are not connected by an edge.

The collected samples are used to train the model ϕ by

training the individual logistic regression models.

4.3 Identifying New Edges
A key idea of this work is that the above model can be used to

identify new edges in event graphs. More specifically, a pair

of events (e1, e2) in a graph G = (V ,E) might be assigned a

high probability by ϕ even though (e1, e2) < E. This means

that G would be “better explainable” by the probabilistic

model if E included the edge. In this case, (e1, e2) is called
an edge candidate. Such edge candidates particularly arise

if the way a pair of objects is used in API methods strongly
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Table 1. Specification patterns and their intuitive meaning.

Here, s and t represent API methods instantiated later to

obtain concrete specifications, and x ∈ Pos \ {ret, 0}.

RetSame(s ) Calling s multiple times with equal arguments

and receiver may return the same object.

RetArg(t , s,x ) Calling t may return the x-th argument of a

preceding call of s on the same receiver where

all other arguments are equal.

suggests the two objects should in fact alias. That is, adding

an edge candidate to the event graph, and thereby merging

histories of previously unrelated objects, will lead to histories

that are “better explained” by the probabilistic model.

For example, consider the edge ℓ in Fig. 3 whose addition

to the event graph would result in merging the histories

of objects o1 and o2. The edge ℓ describes that the object

allocated by a call to getFile is later used as a receiver

of getName. If this API usage pattern has been observed

many times in the training data, ℓ may be assigned a high

probability by ϕ, suggesting objects o1 and o2 should alias.

While introducing additional aliasing relations using edge

candidates such as ℓ allows for improved precision, it does

not yet provide us with the actual API specifications that

explain why the edges were introduced. Next, we will show

how to infer such deterministic and structured API specifi-

cations by building on the probabilistic model.

5 Learning API Aliasing Specifications
We now show how the probabilistic event graph model

from §4 is used to learn aliasing specifications of API meth-

ods. We first instroduce the class of considered specifications

in §5.1. Then, we show how the probabilistic model is used to

score candidates (§5.2) and to select good specifications (§5.3).

Finally, in §5.4, we discuss how the set of inferred specifica-

tions can be extended to ensure additional consistency.

5.1 Hypothesis Class of API Specifications
We now introduce the hypothesis class of API specifications

considered in our work. First, we introduce a set of specifica-
tion patterns, which define our search space. These patterns

are later instantiated with concrete methods so to obtain

candidate specifications.

Specification patterns In Tab. 1, we show the two types of

specification patterns and their intuitive meaning. The vari-

ables s and t (source and target) represent method identifiers

of the same API and will be instantiated later to obtain con-

crete specifications. The variable x is a function argument

position: x ∈ Pos \ {ret, 0}.
The pattern RetSame(s ) expresses that calling the method

s multiple times on the same receiver API object with equal

arguments may return the same object. This models API

methods that read some internal state without changing it.

Note that not all methods behave this way (e.g., the next()
function of a Java Iterator).

The pattern RetArg(t , s,x ) states that if a call to s is even-
tually followed by a call to t on the same receiver object,

t may return the argument at position x in s if (i) the ar-

guments at positions i = 1, . . . ,x − 1 in s are equal to the

arguments at positions i in t , and (ii) the arguments at posi-

tions j = x + 1, . . . , nargs(s ) in s are equal to the arguments

at positions j − 1 in t . This models the case where s stores
some information which is later retrieved by t . For exam-

ple, RetArg(HashMap.get, HashMap.put, 2) expresses that
calling get("key") after put("key",x) might return x.

Values In order to define equality of arguments, we in-

troduce the function valG assigning a set of values to each

event in an event graph G. For a literal construction event

e = ⟨lci , ret⟩, we define valG (e ) = {vi } to be the singleton

set containing the value vi of the constructed literal. Simi-

larly, for an object construction event e = ⟨newT, ret⟩, we
define valG (e ) = {v} with v being a unique identifier of the

allocated object. For all other events e , we define:

valG (e ) = {v | ∃e
′ , e . v ∈ valG (e

′) ∧ e ′ ∈ allocG (e )}.

Note that for any event e = ⟨m, ret⟩ where m is an API

method call, allocG (e ) = {e} and therefore valG (e ) = ∅. This
models the fact that we do not know which object or literal

is returned bym. We useV to denote the set of values.

For example, in Fig. 3, valG (⟨put, 1⟩) = {"key"} as lc1
constructs the string literal "key", while valG (e1) = ∅.

Matching and instantiating patterns We define a pred-

icate equalG (m1,x1,m2,x2) over call sitesm1,m2 ∈ M and

argument positions x1,x2 ∈ Pos \ {ret, 0} as follows:

equalG (m1,x1,m2,x2) ⇐⇒

valG (⟨m1,x1⟩) ∩ valG (⟨m2,x2⟩) , ∅.

This expresses that the values for the x1-th argument inm1

and the x2-th argument inm2 are not distinct, i.e., the two
arguments may actually be the same object or literal value.

We define a pair of call sites (m1,m2) occurring in an

event graph G to match a specification pattern R ifm1 and

m2 satisfy the conditions expressed in R. Formally, (m1,m2)
matches the pattern RetSame(s ) in G = (V ,E) iff

(C1) id(m1) = id(m2) (same method name and signature)

(C2) allocG (⟨m1, 0⟩) = allocG (⟨m2, 0⟩) (same receiver)

(C3) (⟨m2, 0⟩, ⟨m1, 0⟩) ∈ E (m2 is called beforem1)

(C4) ∀i ∈ {1, . . . , nargs(m1)}. equalG (m1, i,m2, i )

The pair (m1,m2) matches the pattern RetArg(t , s,x ) inG
for some x ∈ Pos \ {ret, 0} iff conditions (C2) and (C3) above
are satisfied and

(C1′) nargs(m2) = nargs(m1) + 1
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(C4′) The arguments satisfy

∀i ∈ {1, . . . ,x − 1}. equalG (m1, i,m2, i )

∀j ∈ {x + 1, . . . , nargs(m2)}. equalG (m1, j − 1,m2, j )

If a pair of call sites (m1,m2) matches a pattern R, s (and t )
can be instantiated with id(m2) (and id(m1), respectively) to
obtain a candidate specification, denoted inst(R,m1,m2).

Example Consider the example code snippet in Fig. 2 and

its event graph in Fig. 3. The call site pair (get, put) matches

RetArg(t , s, 2) (1)

and we can instantiate the following candidate specification:

RetArg(HashMap.get, HashMap.put, 2). (2)

Induced edges Candidate specifications provide aliasing

information about API methods. Next, we define the induced
edges of a pattern match, which capture the aliasing relation

expressed by the instantiated specification. We will later use

induced edges to score candidate specifications.

Consider an event graph G = (V ,E). We define childG (e )
for e ∈ V to be the set of children of e in G:

∀e, e ′ ∈ V . e ∈ childG (e
′) ⇐⇒ e ′ ∈ parentsG (e ).

A pair (m1,m2) matching R = RetArg(t , s,x ) induces the set
of all edges from any allocation event of ⟨m2,x⟩ to any child

of ⟨m1, ret⟩:

induced(R,G, (m1,m2)) =

{(e1, e2) | e1 ∈ allocG (⟨m2,x⟩), e2 ∈ childG (⟨m1, ret⟩)}.

A pair (m1,m2) matching R = RetSame(s ) induces the set of
all edges from any child of ⟨m2, ret⟩ to any child of ⟨m1, ret⟩:

induced(R,G, (m1,m2)) =

{(e1, e2) | e1 ∈ childG (⟨m2, ret⟩), e2 ∈ childG (⟨m1, ret⟩)}.

Example Matching pattern (1) with the pair (get, put) in-
duces the dashed edge ℓ in Fig. 3. The edge ℓ states that
the receiver of getName may alias with the return value of

getFile. Accepting a specification for a matching call site

pair results in a history merge which not only adds the in-

duced edges but potentially also other edges to the event

graph. In the example of Fig. 3, all dashed edges are added

when merging the histories for objects o1 and o2.

5.2 Finding and Scoring Candidate Specifications
Next, we show how candidate specifications are extracted

from the input dataset and how they can be scored in order

to select the desired specifications.

Edge confidence In §4.3, we discussed how the model ϕ
also assigns high probabilities to some non-existing event

graph edges. A core idea of our work is that we can issue

queries for induced edges to obtain scores of pattern matches.

That is, if a pattern matching a call site pair induces an edge,

Algorithm 1 Extracting candidate specifications.

1: for each event graph G = (V ,E) of input dataset do
2: AG ← {(m1,m2) | (⟨m2, 0⟩, ⟨m1, 0⟩ ∈ E)}
3: for all (m1,m2) ∈ AG do
4: if (m1,m2) matches a pattern R then
5: S ← inst(R,m1,m2) ▷ candidate spec
6: {ℓ} ← induced(R,G, (m1,m2))
7: p ← ϕ (ftr(ℓ)) ▷ edge confidence
8: append p to the list ΓS

map.put("key", "value");

String value = map.get("key");

Figure 4. Snippet with low confidence for correct spec.

we query ϕ for the probability of that edge. If the probability

is high, we may want to accept the candidate specification.

Consider the pattern match (1) and its induced edge ℓ in
Fig. 3.We can queryϕ (ftr(ℓ)) (see §4.1) to obtain a probability
p for ℓ. As seen earlier in §4.3, adding ℓ to the event graphwill
merge the histories of objects o1 and o2. Thus, p is intuitively

a measure of the probabilistic model’s confidence that o1 is
the same object as o2. We call p the edge confidence of ℓ.

Extracting and scoring candidates We now show how

to extract candidate specifications from the input dataset

and how to score candidates based on edge probabilities.

Alg. 1 describes how candidate specifications are extracted.

The algorithm returns for each candidate S a list ΓS of edge

confidences. Note that the same candidate might be instanti-

ated by multiple pattern matches at different call sites. For

each event graph, we identify the set AG of call site pairs

with identical receiver. In practice, it suffices to only consider

pairs within bounded distance in the event graph (discussed

in §7.1). Next, we check for each (m1,m2) ∈ AG whether

(m1,m2) matches any specification pattern. If yes, we instan-

tiate the candidate specification S , construct the induced

edge ℓ (we ignore cases inducing more than a single edge),

and query ϕ to obtain the edge confidence of ℓ.
Our goal is to obtain a score score(S ) for each candidate S

based on ΓS . It is important to understand that it suffices for

S to be treated as precise if only some values in ΓS are high:

a low edge confidence only suggests that an induced edge

was not able to explain the particular flow of information

in that specific case, but not that S is generally a bad choice.

Note that we expect ΓS to contain some low values as not

all information flow can be explained by the probabilistic

model. For instance, in Fig. 4, a match of (2) likely does not

induce an edge with high confidence in ϕ since the latter

(informally speaking) can not explain why "value" should
be returned by get. However, the edge ℓ depicted in Fig. 3

(induced by the same specification) might be assigned high

confidence as the merge of objects o1 and o2 can be explained

by the API calls getFile and getName (see §4.3).
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There are several ways to compute the score score(S ) of
S . Example scores include (i) the highest value in ΓS , (ii) the
95-percentile of ΓS , or (iii) the average of the k highest values

in ΓS . In our implementation, we use the last approach for

k = 10 as we observed this to perform well empirically.

5.3 Selecting Specifications
Given score(S ) for each collected candidate specification S ,
we retain S only if score(S ) ≥ τ for a threshold τ . We use

S to denote the set of selected specifications. The threshold

τ is a parameter of our system and can be adapted to tune

the precision of S. In 7.2 we show how different values for

τ impact the precision and recall of the results.

Discussion On a high level, the specification patterns con-

sidered in our work capture behaviors of container-like APIs

that store (RetArg) and read (RetSame) values to/from inter-

nal state of the same API object. We also experimented with

different patterns, but the results were modest and hence we

focused on the two that perform empirically well (see §7).

We note that our approach is fundamentally not restricted

to these patterns or to specifications involving a single API

object, class or library. We believe scoring other patterns (or

e.g., naming conventions) using our probabilistic model is

an interesting future research direction.

5.4 Extending the Specification Set
The set S can be extended with further RetSame specifica-

tions so to make the resulting set more consistent. In par-

ticular, the target method t of a RetArg specification should

return the same value when being called a second time on

the same receiver with same arguments, because the RetArg

specification also applies to the second call. This means that

for every specification RetArg(t , s,x ) in S, we can add the

specification RetSame(t ) to S if not already contained in

S. This is a direct way of extending S with further likely

specifications. After extending S, it holds that

∀t , s,x . RetArg(t , s,x ) ∈ S =⇒ RetSame(t ) ∈ S. (3)

In practice however, we observed that for most RetArg

specifications in S, the corresponding RetSame specification

is already contained in S (that is, the extension described

above adds only few specifications to S).

Using the approach described in this section, we were

able to infer 2100 specifications out of 3500 candidates over

millions of source code files (see §7).

6 Pointer Analysis with API Aliasing Specs
We now show how to augment a standard Andersen-style

points-to analysis [3] with the previously learned API alias-

ing specifications in S.

In principle, to leverage S, one could perform a points-to

analysis of the program P (with the assumption that return

values of APIs do not alias) and then extend its event graph

GP based on matches with specifications in S. That is, we

could check whether any possible pair of call sites in GP
with the same receiver matches a specification in S. For

each match, we would add the induced edge to GP together

with additional edges reflecting the corresponding history

merge. The points-to set of an event e is allocGP (e ).
Unfortunately, the set of call site pairs AGP defined in

Alg. 1 is very large in practice (quadratic in the number

of call sites). As we show in §7.1, at learning time we can
reduce the size ofAGP by only considering a subset of pairs

without affecting the quality of the learned specifications.

However, at analysis time, all pairs of events in AGP need

to be considered as any pair of events can effect each other,

which is too inefficient.

We address this issue by proposing an extension to the

classic Andersen-style points-to analysis [3] such that the

obtained abstract histories give rise to the same results as

the above approach while being much more efficient. We

next describe this adaptation.

6.1 Ghost Fields
In order to model information flow through APIs, we adopt

the notion of ghost fields used in [6]. A ghost field is an ar-

tificial API object field that stores objects or literal values

passed to the API. Ghost fields are used to abstract the se-

mantics of an API by modeling container-like behavior. In

our work, we use ghost fields to capture the effects of event

graph edges induced by specifications.

The main idea is to define read and write operations on

ghost fields at call sites based on specifications. For a spec-

ification of the form RetArg(t , s,x ), we let method s write
its x-th argument to the ghost field whose name is derived

from the values of the remaining arguments, and we let t
read that field. Similarly, for a specification RetSame(s ), we
let s read the ghost field whose name is derived from the

arguments to s .

Example Consider again the code snippet of Fig. 2. We can

model the flow of information proposed in specification (2)

by (i) augmenting map with a ghost field named "key", (ii)
writing to that field in the put method, and (iii) reading that

field again in the get method.

6.2 Reading and Writing Ghost Fields
We now describe the previously sketched idea more formally.

In particular, we define how specifications in S induce read

and write operations on ghost fields at call sites.

Let I be the set of method identifiers and let Ghosts :=

I ×V∗ be the set of ghost field names. The first component

of a ghost field name specifies the API method supposed to

read the field. For example:

(get, "the answer is", 42) ∈ Ghosts.
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ReadGhS (m) :=
{
(id(m),v1, . . . ,vk ) |

RetSame(id(m)) ∈ S ∧

v1 ∈ valG (⟨m, 1⟩) ∧ · · · ∧ vk ∈ valG (⟨m,k⟩)
}

WriteGhS (m) :=
{
(v, f ) | ∃t ,x . RetArg(t , id(m),x ) ∈ S ∧

v ∈ valG (⟨m,x⟩) ∧ f ∈ F (m,x , t )
}

F (m,x , t ) =
{
(t ,v1, . . . ,vk−1) |

v1 ∈ valG (⟨m, 1⟩) ∧ · · · ∧ vx−1 ∈ valG (⟨m,x − 1⟩) ∧

vx ∈ valG (⟨m,x + 1⟩) ∧ · · · ∧ vk−1 ∈ valG (⟨m,k⟩)
}

Figure 5. Definitions of ReadGh and WriteGh functions for

a call sitem in graph G with k = nargs(m).

We introduce two functions specifying operations on ghost

fields at call sites. The function ReadGhS : M → P (Ghosts)
assigns to each call site the set of ghost field names (if

any) that may be read at the call site. The second function

WriteGhS : M → P (V×Ghosts) assigns to each call site a

set of pairs (v, f ) indicating that the valuev might be written

to ghost field f of the receiver object at the call site.

In Fig. 5, we provide the formal definitions of these func-

tions. The definition of ReadGhS (m) states that if there exists
a matching RetSame specification in S,m reads the ghost

field named after the identifier ofm and the values of the

arguments. In particular, calling id(m) multiple times with

the same arguments reads the ghost field with same name.

The definition of WriteGhS (m) states that if there exists a
RetArg specification in S whose source is equal to id(m),m
writes all possible values of the argument at the x-th position
to a ghost field with name f . The name f is built from the

target method identifier and the values of the other argu-

ments. Note that due to (3), we have that RetSame(t ) ∈ S
in this case. Therefore, any following call of t on the same

receiver will read the field f written bym.

For example, assume we have learned the specifications

S = {RetSame(get),RetArg(get, put, 2)}. (4)

and letm1 andm2 be the calls to put and get in Fig. 2, respec-
tively. We then have WriteGhS (m1) = {(o1, (get, "key")},
indicating that m1 writes o1 into ghost field (get, "key")
of map. Further, ReadGhS (m2) = {(get, "key")}, indicating
thatm2 reads ghost field (get, "key") of map.

6.3 Extending Andersen-Style Analysis
We now show how to extend an Andersen-style points-to

analysis [3] based on the ReadGh and WriteGh functions.

Towards this, we extend the function π (discussed in §3.1)

to also capture values of ghost fields. This is, we define

π (o, f ) to be the set of objects pointed to by the ghost field

f ∈ Ghosts of object o ∈ L.

Table 2. Deduction rules of our points-to analysis for basic

example statements. The bottom two rules are specific to

our work while the others are based on [3].

x = new T(); {o} ⊆ ρ (x )
Alloc

(o is a new object)

x = y; ρ (y) ⊆ ρ (x )
Assign

x.f = y;

o ∈ ρ (x )

ρ (y) ⊆ π (o, f )
FieldW

x = y.f;

o ∈ ρ (y)

π (o, f ) ⊆ ρ (x )
FieldR

y.m(. . .);

o ∈ ρ (y) (v, f ) ∈ WriteGhS (m)

v ∈ π (o, f )
GhostW

x = y.m(. . .);

o ∈ ρ (y) f ∈ ReadGhS (m)

π (o, f ) ⊆ ρ (x )
GhostR

(if π (o, f ) = ∅, allocate an object z ∈ π (o, f ))

Deduction rules In Tab. 2, we show our extension of the

inference rules employed by an Andersen-style [3] points-to

analysis. The rules for ghost fields share similarities with the

rules for dynamic property accesses proposed by Sridharan

et al. [31]. To illustrate the core idea, we only show rules for

basic statements. Rules for more complex statements and ex-

pressions are analogous. The first five rules are standard [3].

The rule GhostW states that executing m results in the

points-to sets of the ghost fields f of all possible receivers y
to include v , where v and f are defined by WriteGh. Here,

the variablem represents the call site of y.m(. . .).
The rule GhostR states that after assigning the return value

of m to x, the points-to set of x must include all points-to

sets of all ghost fields (as given by ReadGh) of all possible

receivers y. It is important to note that π (o, f ) is empty if the

ghost field has never been written before. In order to model

the aliasing relation proposed by a specification RetSame(m),
we need to ensure that two matching calls to m read the same

abstract object. Hence, we allocate a new abstract object

z ∈ π (o, f ) if π (o, f ) = ∅.

6.4 Improving Points-to Coverage
We can further improve the results of our analysis in cases

where values of API method arguments cannot be resolved.

For example, assume we have learned the specifications

in (4) and consider the snippets in Fig. 6. As no specification

about api.foo() is known, we cannot know its return value.

In our current analysis, the latter is treated as an empty

set. For instance, in Fig. 6a, we have val (⟨put, 1⟩) = ∅ and
therefore WriteGhS (put) = ∅ since no ghost field name can

be constructed. Similarly, in Fig. 6b, ReadGhS (get) = ∅ for
the first call to get. However, we might want to include more
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map.put(api.foo(), obj)

map.get("k1")

map.get("k2")

(a) Writing unknown ghost field

map.put("k", obj)

map.get(api.foo())

map.get("k")

(b) Reading unknown

ghost field

Figure 6. Example of unresolvable API method call argu-

ments in presence of an API api without specifications.

results in our analysis (at the risk of reducing precision) by

modeling that api.foo() in the snippets may return any

of "k1", "k2", "k", or something else. That is, we want the

return values of all calls to get in Fig. 6 to may-alias with

obj. We achieve this by extending the functions ReadGh and

WriteGh such that writes (resp. reads) of unknown ghost

fields use a dedicated field ⊤ (resp. ⊥), see App. A.

7 Evaluation
In this section, we evaluate our approach for learning API

aliasing specifications. In §7.1, we present an implementa-

tion of our approach, called USpec, and introduce our input

dataset. The subsequent evaluation consists of four parts.

First, we inspect the quality and diversity of the inferred

specifications (§7.2). Second, we investigate the quantita-

tive effect of the inferred specifications on the augmented

points-to analysis (§7.3). Third, we show how the augmented

API-aware points-to analysis improves downstream client

analyses (§7.4). Finally, we compare USpec to the most recent

state-of-the-art method for inferring likely aliasing specifica-

tions based on dynamically executing the library APIs (§7.5).

7.1 Implementation and Dataset
We implemented our approach for Java and Python, though

our implementation is mostly language agnostic. Using event

graphs as language independent program representations

makes our approach applicable to most object-oriented pro-

gramming languages. We believe that extending USpec to, for
example, legacy C code—where there is no notion of classes

and points-to analysis is inherently harder—is non-trivial.

Points-to analysis To obtain initial event graphs (§3) and

for the augmented may-alias analysis (§6) we used a speed

optimized Andersen-style flow- and context-sensitive inter-

procedural points-to analysis implemented in C++.
We note that USpec’s learning process is orthogonal to

the initial points-to analysis (§3) and we experimentally ob-

served that higher precision of this analysis yields better

results. We believe that USpec can for example be used to im-

prove aliasing information of dynamic analyses such as [6].

However, USpec can also be instantiated with a less precise
initial analysis at the expense of little precision and recall:

we experimented with a less precise intraprocedural analysis
and observed only a slight performance decline.
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Figure 7. Precision and recall of the selected specifications

for different languages and thresholds τ (labeled datapoints).

Probabilistic model For the logistic regression model (§4),

we used the off-the-shelf machine learning framework Vow-
pal Wabbit. 3 Each possible event graph path and each possi-

ble element in γ is encoded using a unique integer. A logistic

regression feature (c1, c2,d ) is then represented as a set of in-
tegers comprising the union of the encodings for all paths in

c1, c2 and all elements in d . Such a set represents a sparse en-

coding of the feature in an over 100 million (resp. 40 million)

dimensional feature space for Java (resp. Python).

We use a logistic regression model due to its simplicity and

scalability. We also experimented with neural networks and

word embeddings to take naming conventions into account.

Though precision increased slightly, scalability suffered pro-

hibitively. Recent works [11, 13] propose embeddings for

source code, which could be readily used as features in the

model. However, we did not further investigate code em-

beddings as the current features worked empirically well in

our setting. Further, we believe that code embeddings face

similar scalability problems as word embeddings.

Bounded candidate extraction When extracting candi-

date specifications from the input dataset (§5.2), we only

include call site pairs (m1,m2) in AG (Alg. 1) for which the

distance of the receiver events ⟨m1, 0⟩ and ⟨m2, 0⟩ in the

respective object history is at most 10. While we did not

observe a negative effect on the inferred specifications, this

improved performance of specification learning.

Dataset As input to USpec, we used a large dataset con-

sisting of about 4 million (resp. about 1 million) Java (resp.

Python) source code files from 33’251 (resp. 38’023) open-

source GitHub repositories with at least 10 stars. We pruned

our dataset to be free from project forks and file duplicates.

7.2 Quality of Learned Specifications
We now discuss the quality of the specifications learned by

USpec. Particularly, we show how different thresholds τ (§5.3)
impact precision and recall of the selected specifications. Fur-

ther, we provide concrete examples of learned specifications,

some of which are hard to capture using other tools.

3https://github.com/VowpalWabbit/vowpal_wabbit

https://github.com/VowpalWabbit/vowpal_wabbit
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Table 3. Some example specifications inferred using our implementation. The table indicates the API class, the number of

matches in the training set, and the score for each specification. Many of the specifications are non-trivial.

API class Specification # matches score

java.util.HashMap RetArg(get, put, 2) 1’970 0.999

java.security.KeyStore RetSame(getKey) 6 0.995

java.sql.ResultSet RetSame(getString) 1’503 0.993

android.util.SparseArray RetArg(get, put, 2) 40 0.948

com.fasterxml.jackson.databind.JsonNode RetSame(path) 14 0.849

android.view.ViewGroup RetSame(findViewById) 31 0.843

org.antlr.runtime.tree.TreeAdaptor RetArg(rulePostProcessing, addChild, 2) incorrect 139 0.755

(python) Dict RetArg(SubscriptStore, SubscriptLoad, 2) 28’414 0.999

(python) List RetSame(pop) incorrect 254 0.983

(python) configParser.SafeConfigParser RetArg(get, set, 3) 28 0.891

Precision versus recall In order to assess the quality of

selected specifications, we ran the learning pipeline up to

the point where the scored set of candidate specifications is

obtained (§5.2). From these candidates, we randomly sampled

120 specifications and manually labeled each of them as

being valid or invalid by inspecting the respective library

documentation. Note that labeling may be hard. In cases of

doubt, we conservatively labeled specifications as invalid.

Then, we used different thresholds τ to select specifica-

tions from the 120 candidates. For each threshold, we calcu-

lated the precision (i.e., the fraction of valid specifications

in the set of selected ones) and recall (i.e., the fraction of

selected candidates in the set of valid ones). We plot the pre-

cision vs. recall for different thresholds in Fig. 7. We note that

the precision is high already for τ = 0, indicating that many

of the extracted candidates are already correct. Depending

on the desired degree of points-to coverage and precision of

the points-to analysis, the parameter τ can be tuned accord-

ingly (higher recall increases coverage). For our remaining

experiments, we set τ = 0.6.

Characteristics of specifications Next, we ran the full

specification learning pipeline (Fig. 1) using τ = 0.6. Starting
from already parsed source code in an intermediate binary

representation, this took around 5 hours (resp. 2 hours) for

Java (resp. Python) on a Xeon E5-2690 server with 28 cores

and 512 GB of memory. This includes the time required for

running the initial static analysis on all input projects and

training the probabilistic model.

We note that unlike other approaches, USpec considers all
libraries and API methods occurring in its input dataset and

automatically learns specifications for these. Hence, the run-

time of our system depends on the size of the input dataset,

but not on the number of API classes.

In total, for Java (resp. Python) we extracted 1154 (resp.

2394) candidate specifications covering 536 (resp. 1488) API

classes. From these, 621 (resp. 1438) specifications covering

313 (resp. 968) API classes were selected. A detailed break-

down of the number of selected specifications per library

can be found in App. B.

In Tab. 3, we list several selected specifications together

with the number of matches in the input programs and their

score. The table also includes two incorrect specifications.

We observe that some of the displayed specifications can

not easily be obtained using existing tools. For instance,

java.sql.ResultSet poses challenges to approaches rely-

ing on dynamic runs (see §7.5). Further, identification of

most specifications learned by USpec is a challenge for static
analyzers as the specifications include API classes with com-

plex internal implementation: in a random sample of 30 API

classes, we observed that all are non-trivial and make inter-

nal use of data structures. Many of the learned specifications

are interesting and not immediately obvious. For instance,

in 37% of the selected specifications (over all API classes), at

least one of the source and target functions does not contain

get, put or set in its name.

In summary, USpec is able to infer both precise and inter-

esting aliasing specifications for a variety of API classes.

Alternative scoring functions We experimented with al-

ternative scoring functions score(·) such as the number of

matches, the number of repositories or files where a pattern

matches, as well as linear combinations. We observed that

the proposed scoring function performs best empirically. For

instance, with τ = 0.6 it results in precision 0.924 and recall

0.620 for Java (Fig. 7a). When instead using the number of

matches as scoring function, higher precision can only be

achieved at the price of strictly lower recall.

We note that scoring candidates is necessary. As discussed

in §2, directly accepting all aliasing relations with high edge

confidence (i.e., without scoring candidate specifications)

leads to a high number of false positives: we manually ob-

served that for a confidence threshold of 0.5, around 1 out

of 4 predicted additional event graph edges are incorrect.

Further, if RetSame is assumed for all API functions, the

false positive rates increase by almost a factor of two for
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Table 4. Comparison of our API-aware aliasing analysis with an API unaware analysis for 100 call sites yielding different

results. The table shows the the number of call sites where USpec increased points-to coverage and was more / less precise.

increased points-to coverage

while being precise

less precise because of

wrong specification

less precise due to coverage

increasing approach of §6.4

less precise (other)

Java 86 ≈ 1 per 320 loc 4 ≈ 1 per 6’892 loc 8 ≈ 1 per 3’446 loc 2 ≈ 1 per 13’784 loc

Python 81 ≈ 1 per 80 loc 0 - 16 ≈ 1 per 405 loc 3 ≈ 1 per 2’161 loc

both languages. Specifications like RetSame(nextInt) for
java.util.SecureRandom (which is incorrect) are success-

fully filtered out by scoring based on the probabilistic model.

7.3 Effects on Points-to Analysis
Next, we study the effect of the learned specifications on

points-to coverage and precision of points-to analysis. We

compared our API-aware may-alias analysis (§6) using the

specifications learned in §7.2 to a baseline analysis treating

API method calls as if they always return new objects.

We randomly sampled 1000 Java and 1000 Python files

from public GitHub repositories with 10 or more stars. We

then analyzed each of these files with both analyzers and

sampled 100 call sites per language yielding different aliasing

information in the analyzers (note that at these sites, our

approach always increased points-to coverage, meaning that

more relations were identified). Wemanually inspected these

call sites to classify each site into one of four categories:

compared to the baseline, aliasing information of USpec was
(i) increasing points-to coverage while maintaining precision,

(ii) less precise because of an incorrect specification, (iii) less

precise because of the coverage increasing approach of §6.4,

or (iv) less precise for other reasons.

Tab. 4 shows the number of call sites in each category and

the corresponding frequency per lines of source code (loc).

We observe that for over 80% of call sites where points-to

coverage increased, our analysis maintained precision. For

Java (resp. Python) our analysis precisely increased points-to

coverage of the baseline once every 320 (resp. 80) lines of

code. While for Python we did not observe any usages of

wrong specifications in the sample, such wrong specifica-

tions introduced incorrect aliasing information only once

every 6’892 lines of code for Java. Even though the approach

of §6.4 introduced imprecision in a few samples, we note that

it increased points-to coverage in about half of the samples

(not shown).

In conclusion, using our inferred specifications allows to

increase points-to coverage at the cost of only slight loss of

precision. In the next section, we will show how this helps

to improve downstream client analysis.

7.4 Qualitative Effects on Client Analyses
Raw points-to analysis results are often used in some down-

stream client analysis. In this section, we exemplify how

API-aware points-to sets help (i) a type-state analysis client

checking correctness properties and (ii) a taint analysis client

identifying security vulnerabilities. For both of these client

analyses, the precision of the underlying may-alias analysis

plays a vital role in providing quality results.

Type-state analysis Fig. 8a shows a real world code snip-

pet [4] where a missing specification of the java.util.List
API would lead to a false positive in a type-state client anal-

ysis verifying that Iterator::hasNext is true upon calling

Iterator::next. If the alias analysis does not infer that the
two calls of get return the same object, the property can not

be verified. The property is important, because next throws

an exception if hasNext() is false.

Taint analysis Fig. 8b shows a real code snippet vulner-

able to a cross site scripting attack [9] because the user

provided value kwargs[’value’] could flow into html text

without sanitization. In order for a taint analysis client to

accurately model this piece of code and find the vulnerability,

a points-to analysis identifying kwargs[’data-value’] to
alias with kwargs.pop(’value’) is required.

Improvements with USpec Our tool automatically in-

ferred specifications for the APIs used in the examples of

Fig. 8 and our API-aware may-alias analysis increases points-

to coverage by enough to prevent the discussed false positive

and false negative in the client analyses.

We observed that developers often do not introduce new

variables for return values of API methods with collection

like behavior, but call the API method repeatedly instead (as

shown in Fig. 8a). In many of these cases, USpec is able to
infer sound aliasing information.

7.5 Comparison to State-of-the-Art
The recent state-of-the-art system Atlas [6] performs ac-

tive learning using dynamic runs in order to infer precise

points-to specifications. We ran the Atlas tool
4
for the most

frequent classes used in the 1000 Java samples from §7.3. At-

las inferred sound points-to specifications for the java.util
standard collections Hashtable, ArrayList, and HashMap,
which however did not use precise ghost fields depending

on the provided collection indexing keys. That is, the spec-

ification inferred by Atlas returns that reading from a col-

lection may alias with all values inserted in that collection.

These results are consistent with the paper and the source

4https://github.com/obastani/atlas

https://github.com/obastani/atlas
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List <Iterator <Integer >> iters = ...;

for (int i=0; i<iters.size(); ++i) {

if (iters.get(i).hasNext ())

SomeMethod(iters.get(i).next());

}

(a) Java code [4] with aliasing between get methods.

def __call__(self , ..., ** kwargs):

kwargs.setdefault('data -value ',

kwargs.pop('value ', ''))

return HTMLString(

'<a %s>%s</a>' % (html_params (**kwargs ,

kwargs['data -value '])))

(b) Python code [9] with aliasing between setdefault and kwargs.

Figure 8. Code snippets using APIs. The snippets were sim-

plified to highlight the APIs with learned specification.

repository of Atlas. Atlas produced unsound results for alias-

ing between the getProperty and setPropertymethods of

java.util.Properties, essentially learning that any call

of these functions returns a new object. We were surprised

that this class was not included in the Atlas evaluation de-

spite being part of the standard library and being frequently

used in practice and in our dataset. Further, for several other

classes like org.json.JSONObject, Atlas inferred correct

specification only for some of the methods and incorrectly

learned that methods like get always return new objects.

We believe the reason for this is that Atlas did not gener-

ate enough tests to fully cover the classes, which might

be improved by tuning the search parameters. Finally, for

classes like org.w3c.dom.NodeList, java.sql.ResultSet
or java.security.KeyStore, Atlas failed to generate any

non-empty specifications, because it could not figure how to

call a constructor for these classes. This problem might be

mitigated if additional specification is provided to the tool.

None of the specifications produced by Atlas are instantia-

tions of RetSame or RetArg patterns as Atlas’ specifications

do not take arguments into account.

In contrast to Atlas, USpec automatically inferred correct

specifications for classes including org.w3c.dom.NodeList,
java.sql.ResultSet, and java.util.Properties. Addi-
tionally, our inferred specifications allow a more precise

alias analysis since we differentiate API calls based on the

arguments at each call site.

We note that unfortunately, providing a quantitative com-

parison to Atlas (e.g., in the style of Tab. 4) is difficult due to

Atlas’ implementation.While the approach of [6] is generally

applicable, its implementation leverages various heuristics

for invoking only default constructors with specific param-

eters targeting the Java standard library. Adapting Atlas to

additional libraries requires changing its code in multiple

places—a manual effort we only did for some libraries. Run-

ning Atlas on all classes in the evaluation dataset is virtually

impossible without substantial changes to the system.

8 Related Work
In this section we discuss works closely related to ours.

API specification inference Inference of API specifica-

tions is widely studied. Solutions are based on dynamic exe-

cutions [10, 14, 33], combinations with static analysis [19],

or static analysis of library implementations [28]. Similarly

to USpec, [15, 17, 23] observe API usages to predict spec-

ifications, however not directly targeting aliasing specifi-

cations. The work [23] infers preconditions by observing

what actions users typically perform before calling an API,

[15] infers type-state properties, and [17] scores possible

information flows to predict security roles of APIs.

Points-to analysis and inference There is a long line of

work addressing static points-to analysis summarized in [30],

most often based on ideas by Andersen [3]. Pointer analysis

in the presence of external libraries is challenging and has

been addressed by many works. Rountev and Ryder [26]

propose a technique where library modules and source code

using them are analyzed separately and point-to summaries

are statically computed for libraries. Recent work [32] mea-

sures the precision of points-to and numeric analysis when

such summaries are used. The work of Bastani et al. [6] infers

points-to specifications by synthesizing unit tests of library

code in a tool called Atlas, to which we compare in §7.5.

Further techniques [5, 34] require interaction with human

experts to infer specifications. In contrast, our work infers

specifications in a fully unsupervised way, without requiring

the API’s source code or black-box access to the library.

Big Code Our work relies on a large amount of programs

to learn a probabilistic model of code. At a high level, similar

techniques have been used for various other tasks, including

predicting variable names and type annotations [16, 24],

automatically correcting programs in MOOCs [22], and for

statistical deobfuscation of code [8].

9 Conclusion
We presented a new approach for learning API aliasing spec-

ifications from a large dataset of programs. Our method is

fully unsupervised and proceeds by learning a probabilistic

model of aliasing by statically observing usages of APIs in the

dataset. It then leverages the learnedmodel to infer likely API

aliasing specifications. The resulting specifications are used

to augment existing may-alias analyzers so to improve their

results when handling library APIs. We implemented our

approach for Java and Python, and used it to infer thousands

of aliasing specifications, many of which are interesting and

challenging to obtain using existing methods.
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ReadGh
′
S
(m) :=




{⊥id(m) } if ⋆

ReadGhS (m) ∪ {⊤id(m) } otherwise

⋆ RetSame(id(m)) ∈ S ∧ ReadGhS (m) = ∅

WriteGh
′
S
(m) :=

{
(v, f ) | ∃t ,x . RetArg(t , id(m),x ) ∈ S ∧

v ∈ valG (⟨m,x⟩) ∧
(
f ∈ F (m,x , t ) ∪ {⊥t } ∨(
F (m,x , t ) = ∅ ∧ f = ⊤t

) )}
Figure 9. Definitions of ReadGh′ and WriteGh

′
. The differ-

ences to WriteGh are highlighted.

A Unknown Ghost Field Reads or Writes
First, we extend the set Ghosts of ghost field names with

two kinds of special fields⊤M and⊥M for method identifiers

M . The field ⊤M is used to store any objects that would be

written by a method call to a ghost field of the form (M, . . .)
whose full name is unknown due to unknown argument

values. The field ⊥M is used to store all objects ever written

to a ghost field of the form (M, . . .). The core idea is that

(i) for all ghost field reads at any call sitem, also ⊤id(m)
must

be read, and (ii) call sites m that would read a ghost field

whose name is unknown must read ⊥id(m)
.

We formally define functions ReadGh
′
and WriteGh

′
as

shown in Fig. 9. For ReadGh
′
, the condition ⋆ expresses the

fact that m is supposed to read a ghost field but at least

one function argument has an unknown value. In this case,

⊥id(m)
is read. Otherwise, we read the same fields as ReadGh

and additionally ⊤id(m)
. The definition of WriteGh

′
extends

WriteGh as highlighted. If the field name is unknown due to

an unknown value, we write to ⊤t . All writes are extended

by a write to ⊥t .

For example, in Fig. 6a, put writes obj to fields ⊤get
and

⊥get
, and both calls of get return obj by reading from fields

including ⊤get
. In Fig. 6b, put writes obj to fields (get, "k")

and ⊥get
. The first call of get returns obj by reading from

⊥get
, while the second call returns obj by reading from

(get, "k").
We adapt the deduction rules of §6.3 to use the new func-

tions ReadGh
′
and WriteGh

′
. In rule GhostR, the new object

z is only allocated for f , ⊤id(m)
. This ensures that, e.g., in

Fig. 6a, the return values of the two calls to get would not

alias if the call of put was missing.

B Selected Specifications by Library
Tab. 5 and Tab. 6 list the 12 Java and Python libraries for

which the highest number of specifications were selected.
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