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ABSTRACT
Certifying the robustness of neural networks against adversarial attacks is essential to their reliable adoption
in safety-critical systems such as autonomous driving and medical diagnosis. Unfortunately, state-of-the-art
verifiers either do not scale to bigger networks or are too imprecise to prove robustness, limiting their practical
adoption. In this work, we introduce GPUPoly, a scalable verifier that can prove the robustness of significantly
larger deep neural networks than previously possible. The key technical insight behind GPUPoly is the design
of custom, sound polyhedra algorithms for neural network verification on a GPU. Our algorithms leverage the
available GPU parallelism and inherent sparsity of the underlying verification task. GPUPoly scales to large
networks: for example, it can prove the robustness of a 1M neuron, 34-layer deep residual network in≈ 34.5 ms.
We believe GPUPoly is a promising step towards practical verification of real-world neural networks.

1 INTRODUCTION

With the widespread adoption of deep neural networks in
several real-world applications such as face recognition,
autonomous driving, and medical diagnosis, it is critical to
ensure that they behave reliably on a wide range of inputs.
However, recent studies (Szegedy et al., 2013) have shown
that deep networks are vulnerable to adversarial examples,
illustrated in Fig. 1. Here, a neural network classifies an
image I0 correctly as a car. However, an adversary can
increase the intensity of each pixel in I0 by a small imper-
ceptible amount to produce a new image I that still looks
like a car but the network incorrectly classifies it as a bird.

Figure 1. Image I0 is classified correctly as a car by the neural
network, while image I , obtained by increasing the intensity of
each pixel in I0 by 1/255 is wrongly classified as a bird.

Neural network robustness. Given this susceptibility to
adversarial examples, recent years have seen increased in-
terest in automated methods that can certify robustness of
neural networks, that is, to prove that adversarial examples
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cannot occur within a specified adversarial region (Katz
et al., 2017; Ehlers, 2017; Wong & Kolter, 2018; Gehr
et al., 2018). A typical example of an adversarial region
would be the L∞ ball of radius ε ∈ R+ around an image
I0 (Carlini & Wagner, 2017). The goal of certification then
is to prove that all images in this region are classified cor-
rectly by the network (i.e., to the same label as I0). Note
that the adversarial region usually contains an exponential
(in image size) number of images, which makes exhaustive
enumeration infeasible. For example, image I0 in Fig. 1
contains 3, 072 pixels. If we consider a radius of ε = 1/255
around I0, then the number of images in the adversarial set
L∞(I0, ε) is 33072 (in our experiments we consider signif-
icantly larger ε values).

Key challenge: scalable and precise verification. Be-
cause concrete enumeration is infeasible, neural network
verifiers compute the output for all inputs in the adversarial
region symbolically. These verifiers can be broadly clas-
sified as either exact or inexact. Exact verifiers typically
employ mixed-integer linear programming (MILP) (Tjeng
et al., 2019), SMT solvers (Katz et al., 2017; Ehlers, 2017;
Bunel et al., 2018; Katz et al., 2019) and Lipschitz opti-
mization (Ruan et al., 2018). They are computationally ex-
pensive and do not scale to the network sizes considered
in our work. To address this scalability issue, inexact ver-
ifiers compute an over-approximation of the network out-
put. Due to this approximation, a verifier may fail to prove
the network robust when it actually is. Inexact verifiers
are typically based on abstract interpretation (Gehr et al.,
2018; Mirman et al., 2018; Singh et al., 2018; 2019b), du-
ality (Dvijotham et al., 2018; Wong & Kolter, 2018), lin-
ear approximations (Weng et al., 2018; Zhang et al., 2018;
Boopathy et al., 2019; Salman et al., 2019; Zhang et al.,
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2020; Wang et al.; Gowal et al., 2018; Xu et al., 2020; Tran
et al., 2020), and semi definite relaxations (Raghunathan
et al., 2018; Dathathri et al., 2020). There are also meth-
ods (Wang et al., 2018; Singh et al., 2019c;a; Tjandraat-
madja et al., 2020) that combine both exact and inexact ap-
proaches aiming to be more scalable than exact methods
while improving the precision of inexact methods.

There is a trade off between scalability and the degree
of over-approximation of inexact verifiers. More pre-
cise, inexact verifiers (Wong & Kolter, 2018; Gehr et al.,
2018; Singh et al., 2018; 2019b; Weng et al., 2018; Zhang
et al., 2018; Boopathy et al., 2019; Salman et al., 2019;
Raghunathan et al., 2018; Wang et al., 2018; Singh et al.,
2019c; Tran et al., 2020) scale to medium-sized networks
(≈ 100K neurons) or verify weaker robustness properties
(e.g. brightness (Pei et al., 2017)) but cannot handle the
networks and properties (e.g. L∞-norm) that our work can
(≈ 1M neurons). On the other hand, more approximate ver-
ifiers (Mirman et al., 2018; Wang et al.; Gowal et al., 2018;
Zhang et al., 2020; Xu et al., 2020) scale to bigger networks
but lose too much precision and fail to prove robustness,
which limits their applicability. Thus, a key challenge is to
design neural network verifiers that scale to large networks
yet maintain the precision necessary to certify meaningful
robustness guarantees.

Scalable, precise and sound verification on a GPU. In
this work, we present GPUPoly, a new neural network
verifier that addresses the above challenge via algorithms
that leverage the processing power of GPUs. Concretely,
GPUPoly: (i) introduces a method that enables the fine-
grain data parallelism needed to benefit from GPUs, (ii) is
memory efficient and can fit into GPU memory (which is
much smaller than that of a CPU), and (iii) is sound for
floating point arithmetic, capturing all results possible un-
der different rounding modes and orders of execution of
floating point operations, thus handling associativity cor-
rectly (important concern, as recent verifiers which are un-
sound for floating-point have been shown vulnerable to
such attacks (Jia & Rinard, 2020; Zombori et al., 2021)).

GPUPoly is based on the state-of-the-art DeepPoly relax-
ation (Singh et al., 2019b) equipped with new, custom al-
gorithms which exploit the underlying sparsity, and use a
novel stopping criteria that can decrease runtime without
compromising accuracy.

We note that it is possible to implement DeepPoly on a
GPU using off-the-shelf libraries such as PyTorch (Paszke
et al., 2017) and Tensorflow (Abadi et al., 2015) as in
(Zhang et al., 2020; Xu et al., 2020). Unfortunately, these
frameworks cannot exploit the sparsity patterns produced
by DeepPoly, resulting in implementations that lack the
performance and memory efficiency needed for handling
the large networks considered in our work.

Main contributions. Our main contributions are:

• New algorithms to efficiently parallelize the state-of-
the-art DeepPoly relaxation on GPUs, enabling fast
and precise verification of networks with up to ≈ 1M
neurons.

• A complete floating-point-sound CUDA implementa-
tion in a verifier called GPUPoly that handles fully-
connected, convolutional, and residual networks. Our
code is available as part of the ERAN framework at
https://github.com/eth-sri/eran.

• An experimental evaluation of GPUPoly demonstrat-
ing its effectiveness in proving the robustness of neu-
ral networks beyond the reach of prior work.

We note that while we use GPUPoly for proving robust-
ness against intensity perturbations in this work, GPUPoly
is more general and can be used to certify other properties
including safety (Katz et al., 2017), fairness (Ruoss et al.,
2020), and robustness against geometric (Balunovic et al.,
2019; Ruoss et al., 2021), contextual (Paterson et al., 2021),
and generative (Mirman et al., 2020) perturbations.

2 BACKGROUND AND NOTATION

We now introduce the necessary background on both neural
network robustness and the DeepPoly relaxation.

Classification network. For simplicity, the networks we
consider here are built from a composition of two kinds of
layers: the affine and the ReLU layer. We use the word neu-
ron for the abstract node in such a layer, and we denote with
x`i the ith neuron in the `th layer x`. The affine layers such
as fully-connected, convolutional, and residual layers per-
form an affine mapping x` = A·x`−1+b,whereA = (ai,j)
is a matrix and b = (bi) is a vector. The ReLU layer trims
negative values element wise: x`i = max(x`−1i , 0).A given
input image I is assigned to the input layer x0, and evalu-
ated successively through the different layers. The neuron
index in the final layer with the highest value yields the
inferred category.

L∞-norm based robustness properties. Given an image
I0 correctly classified by the network, and a number ε > 0,
the adversarial region L∞(I0, ε) is the set of images I for
which each pixel i differs by at most ε from the correspond-
ing one in I0: ||Ii − I0i ||∞ ≤ ε. The objective of a verifier
is to prove that all images in this region classify correctly.

DeepPoly analysis. The DeepPoly (Singh et al., 2019b)
relaxation associates four bounds with every neuron x`i : (i)
lower and upper polyhedral bounds of the form

∑
j ai,j ·

xkj +c ≤ x`i and x`i ≤
∑

j a
′
i,j ·xkj +c′, respectively, where

0 ≤ k < `, and (ii) interval bounds l`i ≤ x`i ≤ u`i , where

https://github.com/eth-sri/eran
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ai,j , a
′
i,j , c, c

′, l`i , u
`
i ∈ R. We refer to

∑
j ai,j · xkj + c and∑

j a
′
i,j ·xkj + c′ as the lower and upper polyhedral expres-

sions, respectively. The polyhedral bounds for each x`i are
obtained by modeling the effects of affine transformation
and ReLU as follows:

• The affine transformation x`i =
∑

j a
`−1
i,j · x

`−1
j + bi

adds the bounds
∑

j a
`−1
i,j ·x

`−1
i +bi ≤ x`i ≤

∑
j a

`−1
i,j ·

x`−1i + bi. Thus DeepPoly handles affine layers ex-
actly.

• x`i = ReLU(x`−1i ) adds the bounds α`
i · x

`−1
i + β`

i ≤
x`i ≤ γ`i · x

`−1
i + δ`i where the constants α`

i , β
`
i , γ

`
i , δ

`
i

are determined by the concrete bounds l`−1i ≤ x`−1i ≤
u`−1i . If l`−1i > 0 or u`−1i ≤ 0, then the DeepPoly
analysis is exact, otherwise it over-approximates.

The tightness of the concrete bounds of the neurons from
the affine layers that are input to ReLU layers affects the
precision of the DeepPoly analysis as the bounds deter-
mine whether the ReLU is handled exactly and otherwise
affect the level of imprecision in case its effect is over ap-
proximated. DeepPoly computes tight concrete bounds for
each x`i in an affine layer by maximizing and minimizing
its value with respect to the set of polyhedra and inter-
val bounds over the neurons in all previous layers already
computed by DeepPoly. DeepPoly solves both these lin-
ear programs approximately (for scalability reasons) using
a greedy algorithm called backsubstitution (not to be con-
fused with back-propagation) which is the main bottleneck
of the analysis and therefore the focus of our work.

Bottleneck Backsubstitution. The backsubstitution algo-
rithm for computing an upper bound u`i (the lower bound
is computed analogously) for neuron x`i in an affine layer
starts with the upper polyhedral bound x`i ≤

∑
j a

`−1
i,j ·

x`−1 + bi added by the affine transformation. It then sub-
stitutes the concrete upper or lower bounds for each x`−1

depending on the sign of the coefficient ai,j obtaining a
candidate upper bound. Next, it substitutes for each x`−1

the corresponding upper or lower polyhedral bound (again
depending on the sign of ai,j) defined over the neurons in
layer `− 2. This yields a new polyhedral bound for x`i now
defined over the neurons in layer ` − 2. It again uses con-
crete bounds for the neurons in x`−2 to compute another
candidate bound.

The algorithm repeats this step until it reaches the in-
put layer. The result is the smallest candidate among the
bounds computed at each step. Since backsubstitution only
involves reading data from the previous layers, it can be ex-
ecuted in parallel for all neurons in a given layer `, which
is ideal for GPU parallelization. For simplicity, we will
focus on the most expensive step of backsubstitution for
the remainder of this paper: computing new polyhedral

Figure 2. Backsubstitution in polyhedra bounds for `-th layer neu-
rons. We omit the constant term in the bounds for simplicity.

bounds for x`i when the polyhedral bounds for the neurons
xkj with k < ` to be substituted are the result of an affine
transformation in fully-connected, convolutional, or resid-
ual layers. Without loss of generality, we therefore ignore
the ReLU layers and consider neural networks as just a se-
quence of affine layers.

Backsubstitution as matrix multiplication. The left ma-
trix Mk in Fig. 2 encodes bounds for `-th layer neurons
with polyhedral expressions defined over the neurons in
layer 1 ≤ k < `. The center matrix F k encodes con-
straints for k-th layer neurons defined over the neurons in
layer k − 1. We focus on the computation of the entry
(h2, j2) (shown in blue) in the result matrix Mk−1. The
corresponding entries of Mk and F k used for computing
(h2, j2) are subset of their h2-th row and j2-th column
respectively (also shown in blue). The entry (h2, j2) en-
codes the coefficient for neuron j2 of layer k − 1 in the
constraint for x`h2. The substitution (as defined above)
computes (h2, j2) by multiplying blue each entry (h2, i)
in Mk with the blue entry (i, j2) of F k where 1 ≤ i ≤ s.
Each multiplication result represents a term involving xk−1j2

obtained by substituting the expression for xki in the con-
straint for x`h2. The results are then summed which causes
cancellation. This computation can be seen as multiply-
ing the h2-th row of Mk with the j2-th column of F k

and the overall computation thus is a matrix multiplication
Mk−1 =Mk · F k.

We note that for fully-connected layers, all entries in the
h2-th row and j2-th column are needed for computing
(h2, j2), while the convolutional and residual layers re-
quire a smaller subset. Identifying this subset is key to
achieving the compute and memory efficiency required for
obtaining a precise and scalable analysis. We design cus-
tom algorithms tailored to exploit the sparsity patterns ob-
served when handling convolutional and residual layers.
We note that while matrix multiplication can be easily par-
allelized on GPUs, the standard algorithms (Zhang et al.,
2020; Xu et al., 2020) are not memory and compute effi-
cient for our task and run out of memory on medium-sized
benchmarks (≈ 170K neurons). Further, to ensure floating
point soundness we perform all computations in interval
arithmetic, which prevents the use of existing libraries.
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Asymptotic cost. Consider a neural network with n affine
layers and with each layer containing at most N neu-
rons. The backsubstitution tasks for all neurons at an in-
termediate layer ` ≤ n perform a matrix multiplication
in O(N3) for all preceding affine layers (the ReLU lay-
ers have quadratic cost) resulting in an overall cost of
O(` · N3). Because backsubstitution is performed for ev-
ery layer of the network, the DeepPoly algorithm requires
O(n2 ·N3) operations.

3 ROBUSTNESS VERIFICATION ON GPUS:
CONCEPTS AND ALGORITHMS

In this section, we introduce two key concepts that we ex-
ploit to design and implement an efficient DeepPoly-based
GPU algorithm for verifying deep neural networks. The
notion of dependence set allows us to harness the sparsity
of convolutional and residual layers to speedup backsubsti-
tutions, while an early termination criterion allows us to
skip computations that would not improve results.

3.1 Dependence set

The core concept for exploiting sparsity in convolutional
layers in our algorithms is the dependence set. Before
defining it formally, we illustrate it on an example of back-
substitution through two convolutional layers (backsubsti-
tution through fully-connected layers can be implemented
as a dense matrix-matrix multiplication as explained in
Section 2). We denote the neuron i in a convolutional layer
` as x`i = x`w,h,d, where w, h, d are its indices in the width,
height, and depth dimensions, respectively. The rows of the
matrix Mk (1 ≤ k < `) depicted in Fig. 2 are the interme-
diate results of htmany independent backsubstitutions, one
for each neuron in layer `. We show one such single-neuron
backsubstitution in Fig. 3 for neuron x`1,3,1. In our exam-
ple, layer ` has size 3 × 3 × 2, whereas the previous layer
` − 1 has size 5 × 5 × 2. The convolution operation with
filters having w and h dimension 3× 3, creates constraints
for the neuron in layer ` with a subset of the neurons in
layer ` − 1 that are part of a 3 × 3 × 2 block, as shown in
layer `− 1 in Fig. 3.

We call this set of neurons in layer ` − 1 the first depen-
dence set of x`(1,3,1). Note that the first dependence set of
x`(1,3,1) and x`(1,3,2) is the same. The second dependence
set of x`(1,3,1), also shown in Fig. 3, has size 4× 4× 2 (fil-
ters between layer `−2 and `−1 have w- and h-dimension
2 × 2). The second dependence set of x`(1,3,1) is obtained
by taking the neurons in the output of the first dependence
set and then for each neuron in this output, adding its cor-
responding first dependence set to the final output.

The dependence sets identify the dense submatrices (blue
entries in Mk and F k in Fig. 2) needed for computing

1

ℓ − 2 ℓℓ − 1

3 × 3 × 25 × 5 × 26 × 6 × 2

𝑥(1,3,1)
ℓ

𝒟1(𝑥(1,3,1)
ℓ )𝒟2(𝑥(1,3,1)

ℓ )

4 × 4 × 2
3 × 3 × 2

1 × 1 × 1

𝑤

𝑑
ℎ

Figure 3. Backsubstitution from a single neuron in layer ` to lay-
ers ` − 1 and ` − 2. The number of neurons in layers `, ` − 1,
`− 2 are 3× 3× 2, 5× 5× 2, and 6× 6× 2 respectively.

backsubstitution through convolutional and residual lay-
ers. This enables a compute and memory-efficient GPU
implementation that leverages dense matrix-matrix opera-
tions for high performance gains. Next we define depen-
dence sets formally and then present our algorithms.

Network DAG. We first define the network DAG associated
with a neural network. In a network DAG (V, E), V is the
set of all neurons. Two neurons are connected by a directed
edge (xkj , x

`
i) ∈ E if xkj is directly needed to compute x`i .

More formally, (xkj , x
`
i) ∈ E if layer k is an immediate

predecessor (contains inputs) of layer ` and

• ` is a convolutional layer and xkj is in the window for
computing x`i , or

• ` is a ReLU or a residual layer and j = i, or

• layer ` is fully-connected.

Note that for fully-connected and convolutional architec-
tures, we have k = ` − 1, while for a residual network,
layer ` can have multiple immediate predecessors k < `.

Formal definition. The first dependence set of a neuron
x`i collects all its immediate predecessors in the network
DAG:

D1(x`i) = {xkj | (xkj , x`i) ∈ E}, (1)

Similarly for a set of neurons X ` in the same layer `:

D1(X`) =
⋃

x`
i∈X`

D1(x`i) (2)

We extend this concept recursively. The m-th dependence
set, m ≥ 2, of x`i is the first dependence set of Dm−1(x`i):

Dm(x`i) = D1(Dm−1(x`i)) (3)
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and the definition of Dm(X `) is analogous. We also define
the zeroth dependence set as D0(x`i) = {x`i}.

During DeepPoly analysis, all neurons appearing in the
polyhedral bounds obtained when backsubstituting itera-
tively on the polyhedral constraints for x`i are available in
the different sets D`−k(x`i) with k = `− 1, . . . , 0. The ex-
pression in the initial bound contains neurons from D1(x`i)
and we call it step 1 of backsubstitution. Step 2 substitutes
for each neuron in D1(x`i), the polyhedral bound defined
over the neurons in D2(x`i) resulting in a new bound for
x`i defined over the neurons in D2(x`i). Continuing analo-
gously, we see that D`−k(x`i) contains the neurons appear-
ing in the bounds after `− k steps. In Section 4, we exploit
the structure of the convolutional layers to derive recursive
expressions for computing D`−k(x`i) that enable fast com-
putation with negligible overhead. Next, we discuss the
backsubstitution for the different network types in greater
detail.

Efficient backsubstitution for convolutional networks.
Naively using a dense matrix-matrix multiplication for a
backsubstitution starting at a convolutional layer ` is very
memory and compute inefficient. First, the majority of
computations are not needed since the filters in the con-
volutional layers are sparse and thus the filter matrix F k

of Fig. 2 consists of mostly zeroes. Additionally, it is not
memory efficient since many coefficients in matrices Mk

and Mk−1 of Fig. 2 will be zero during backsubstitution.

Key idea. The neurons in the polyhedral expression for
x`i after ` − k backsubstitution steps (0 ≤ k < l) are in
the dependence set D`−k(x`i). For an efficient implemen-
tation on GPUs, utilizing the dependence set, we can flatten
the needed coefficients into a dense matrix to perform the
backsubstitution again efficiently as matrix-matrix multi-
plication. This will be detailed in Section 4.

Dependence set and residual networks. To simplify the
exposition of our ideas and without loss of generality, we
assume that the width of the residual network is two, i.e.,
a layer has no more than two immediate predecessors or
successors. An example of such an architecture is in Fig. 4
which shows a residual block consisting of one convolu-
tional layer in each branch with all ReLU layers removed
for simplicity.

. . . Conv1

Conv2

Conv3

Conv4 . . .
a

b

a

b

Figure 4. Simplified residual architecture without ReLU layers.

For simplicity, we assume that the two branches of a resid-
ual block have the same length and call them a and b. In
Fig. 4 branches a and b contain the Conv2 and Conv3 layer,

respectively. Naturally, the layer at the head of the residual
block (Conv1 in Fig. 4) has two successors while the one at
exit (Conv4 in Fig. 4) has two predecessors.

The first dependence set of a neuron x`i in a layer at the exit
of a residual block (e.g., Conv4 in Fig. 4) contains neurons
from both branches (subsets of layers Conv2 and Conv3 in
Fig. 4). The resulting dependence set can be written as:

D1(x`i) = D(1,a)(x`i) ∪ D(1,b)(x`i), (4)

where D(1,a)(x`i) and D(1,b)(x`i) are the first dependence
sets of x`i with respect to branches a and b, respectively.

In our algorithm, we leverage the above partition of the first
dependence set to backsubstitute through both branches in-
dependently and then join the independent backsubstitu-
tions at the head of the residual block (in our case Conv1)
by adding the coefficients of the expressions neuron by
neuron. For this, the two resulting dependence sets coming
from the two residual branches, which do not necessarily
have the same size, need to be overlapped correctly. We
omit these details due to lack of space.

3.2 Early termination

The DeepPoly backsubstitution algorithm can be termi-
nated early if the following criterion is met.

Termination criterion. The polyhedral approximation of
a ReLU layer is exact if 0 is not strictly included within its
bounds. In this case, no additional precision can be gained
for this neuron by backsubstituting further.

An efficient implementation of DeepPoly should therefore
filter those neurons out of the backsubstitution that satisfy
this termination criterion. With the formalism introduced in
Section 2, this amounts to removing a selection of rows out
of the matrix Mk. We will propose a method to perform
this operation efficiently with a shared memory machine
model in Section 4.

4 GPUPOLY

We now explain our GPUPoly algorithm. We first explain
how to maintain floating point soundness using interval
arithmetic. Next, we discuss the implementation of the
early termination criterion. Then we discuss how to com-
pute the size and elements of the dependence set D`−k(x`i)
of x`i in layer k < ` for convolutional layers. We use this
set in our parallel algorithm for the backsubstitution.

4.1 Floating point soundness

An essential property and major challenge is to ensure that
our certification guarantees are valid under floating-point
arithmetic (Jia & Rinard, 2020; Zombori et al., 2021) where
round off errors are frequent and common mathematical



Scaling Polyhedral Neural Network Verification on GPUs

properties such as associativity do not hold. To be floating
point sound, our analysis output should contain all results
possible under different rounding modes and execution or-
ders of operations. To achieve this, we replace the scalar
coefficients of our polyhedra bounds with intervals. There-
fore, our bounds actually describe a set of polyhedra in-
stead of a single polyhedron.

To ensure soundness under all rounding modes, all float-
ing point operations on intervals are performed such that
the lower bound is always rounded towards −∞ and the
upper bound towards +∞. This particularly prevents the
use of standard BLAS libraries. Our matrix-matrix multi-
plication procedure is built around a custom multiply-add
operation, and uses the cutlass template library for tiling.
In addition, GPUPoly takes into account the error that may
occur during inference, because of the lack of associativity
for floating point operations. This is done by systematically
taking the next representable floating value for the terms of
all summations, in the direction that will over-approximate
the error as described in detail in (Miné, 2004). Overall,
ensuring floating point soundness doubles the memory re-
quirement and more than doubles the number of floating
point operations needed.

4.2 Implementing early termination

The original DeepPoly algorithm performs a complete
backsubstitution for all the input neurons of ReLU lay-
ers. In this part, we describe the changes we introduced
in GPUPoly to fully exploit the early termination criterion
described in Section 3.

In order to have a first approximation of the interval bounds
of hidden neurons, a forward interval analysis is performed
as a preliminary step. Then, a regular DeepPoly analysis is
performed, with the particularity that when a ReLU layer
is encountered, its inputs (rows in the matrix Mk) are not
directly backsubstituted. Instead, an intermediate matrix
M ′k containing only the neurons that do not match the ter-
mination criterion is created, along with an array contain-
ing the indices of the corresponding rows in the original
matrix Mk (we will explain this step later). Then, a back-
substitution is performed on the matrix M ′k, and the re-
sulting interval bounds are assigned to their corresponding
neurons, using the array. Finally, a forward interval analy-
sis updates the approximations of the following layers, be-
fore regular DeepPoly analysis resumes.

By construction, GPUPoly visits ReLU layers in a topolog-
ical order with respect to the network DAG. This ensures
that all backsubstitutions only use the best possible polyhe-
dral approximation of their ancestors, thus guaranteeing the
same result as the original algorithm. In addition, during
these backsubstitutions, concrete bounds are re-evaluated
regularly, and the rows of the neurons that match the termi-

nation criterion are removed from M ′k.

In the worst case, GPUPoly computes all backsubstitu-
tions completely, and has similar performance as if this
optimization was not implemented, as the additional steps
have a negligible runtime with respect to backsubstitutions.
However, in many practical cases (as in Section 5), sig-
nificantly fewer backsubstitutions are actually computed,
yielding a significant speedup.

Removing rows from a matrix in a shared memory con-
text. To create M ′k and the corresponding index array,
each thread of the GPU is associated with one row of Mk,
and checks whether the termination criterion is met for that
row. A parallel prefix sum is then performed between all
threads, with the value 0 if the termination is met, and 1
otherwise. This way, each thread associated with a non-
terminated neuron receives a unique integer i ranging be-
tween 0 and the number of non-terminated neurons. Fi-
nally, each thread associated with a non-terminated neuron
copies its corresponding row at the ith row of M ′k, and
writes its index at the ith place of the array.

Memory management. For larger networks, the matrix
Mk may not entirely fit in GPU memory. In these situa-
tions, the intermediate matrix M ′k can be used to sequen-
tially backsubstitute chunks of Mk that are small enough
to fit in memory.

4.3 Dependence sets for convolutional networks

To simplify the exposition and without loss of generality,
we assume that all parameters of convolutional layers have
the same value in horizontal h and vertical w directions,
such as filter sizes fkw = fkh = fk, strides skw = skh = sk

and the padding pkw = pkh = 0.

In Fig. 3 we have seen examples of the first and second de-
pendence set of a neuron in a convolutional layer. Now we
derive the general equations for the size and offset of the el-
ements of (`−k)-th dependence setD`−k(x`i) as a subset of
the neurons in a convolutional layer 0 ≤ k < `. D`−k(x`i)
is a cuboid and we compute the size of the set D`−k(x`i)
along the height, width and depth direction separately. We
note that the k-th dependence set, given k > 0, is always
dense in the depth direction for convolutional layers, so the
size of D`−k(x`i) in the depth dimension is equal to the
number of channels of layer k. Because of our symmetry
assumption for the w and h directions of convolutional pa-
rameters, the width and the height of D`−k(x`i) are equal,
and we denote it with W `−k. The following recurrence
computes W `−k+1 given W `−k:

W 0 = 1,

W `−k+1 = (W `−k − 1) · sk + fk, k = ` . . . 1. (5)

For example, in Fig. 3 we obtainW 1 = (W 0−1)·1+3 = 3
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for the first dependence set andW 2 = (W 1−1) ·1+2 = 4
for the second dependence set. The overall size ofD`−k is:

|D`−k(x`i)| =W `−k ·W `−k ·Ck, k = `− 1 . . . 0. (6)

where Ck is the number of channels of layer k. We com-
pute the neuron indices next.

The indices depend on the location of x`i in layer `. We
only need to derive the position in the width and the height
direction as all the corresponding channels of layer k are
in D`−k(x`i). Let the position of x`i in layer ` be i =
(w`, h`, d`). Then the w- and h-positions of the neuron
with the smallest coordinates in D`−k(x`i) are:

w`−k = S`−k · w`, (7)

h`−k = S`−k · h`, k = `− 1 . . . 0. (8)

where we introduced the quantity S`−k, which we call ac-
cumulated stride computed via the following recurrence:

S0 = 1, (9)
S`−k+1 = sk · S`−k, k = ` . . . 1. (10)

The extension to other padding modes is similar. Using the
the size and the position of D`−k(x`i) in layer k, we can
now recursively compute, for k = ` − 1 . . . 0 the associ-
ated coefficients of the neurons in D`−k(x`i) occurring in
the backsubstituted expression. We store these in a dense
matrix called Mk(x`i). In each step these get modified by
the backsubstitution:

M `−1(x`i) =(a1, a2, . . . , a|D1(x`
i)|),

Mk−1(x`i) =GBC(M
k(x`i),D`−k(x`i),

D`−k+1(x`i), F
k), 1 ≤ k ≤ `− 1.

M `−1(x`i) contains the coefficients corresponding to the
neurons in the first dependence set in the initial polyhedra
bound. We ignore the constant in the bound for simplifying
our exposition. GBC (GPUPoly Backsubstitution for Con-
volution) is our algorithm for handling a single step of a
backsubstitution task in convolutional networks, shown in
Algorithm 1 and explained below. F k is the bound ma-
trix between the neurons in layer k and k − 1 generated
during DeepPoly analysis (Fig. 2). As in Section 2, F k

corresponds to the filter for convolutional layers. We next
explain GBC in greater detail.

4.4 Our algorithm for convolutional networks

To be memory and compute efficient on GPU, our algo-
rithm should compute the backsubstitution of the bound
matrix Mk through one convolutional layer k obtaining
Mk−1 (as in Fig. 2), but for each row of theMks, only iter-
ate over the respective dependence sets D`−k

hi and D`−k+1
hi .

Algorithm 1 GBC(M `−k, ∀hi :
(
D`−k

hi ,D`−k+1
hi

)
,F k)

1: Mk,Mk−1 ← coefficient matrices for layers k, k − 1
2: D`−k

hi ← (`− k)-th dependence set of x`hi
3: (W `−k,W `−k, Ck)← dimensions of D`−k

4: D`−k+1
hi ← (`− k + 1)-th dependence set of x`hi

5: (W `−k+1,W `−k+1, Ck−1)← dimensions of D`−k+1
hi

6: (fk, fk)← filter size in w and h directions of layer k
7: (sk, sk)← strides in w and h directions for layer k
8: F k ← 4-D filter weight tensor of layer k
9: (fk, fk, Ck, Ck−1)← dimensions of F k

10: for hi ∈ (h1 : ht) do
11: for (w, h) ∈ (0 :W `−k, 0 :W `−k) do
12: for (f, g) ∈ (0 : fk, 0 : fk) do
13: a = w · sk + f
14: b = h · sk + g
15: for c ∈ (0 : Ck−1) do
16: M `−k+1

hi [a][b][c] = 0

17: for d ∈ (0 : Ck) do
18: Mk−1

hi [a][b][c] +=Mk
hi[w][h][d]·F k[f ][g][d][c]

Ideally it should be possible to implement the algorithm via
a matrix-matrix multiplication. Algorithm 1 satisfies these
requirements.

The outermost loop hi ∈ (h1 : ht) in line 10 iterates over
the rows of Mk. In lines 11 and 17 the algorithm loops
over the dimensions (W `−k,W `−k, Ck) of D`−k

hi . Instead
of iterating on the full range (W `−k+1,W `−k+1, Ck−1) of
D`−k+1

hi the sparsity of the convolution allows us to only
loop over the dimensions (fk, fk, Ck−1) in lines 12 and
15 . This requires additional index computations in lines
13 and 14 for expressing addresses in layer k − 1 in terms
of those in layer k. Finally in line 18 all non-zero entries of
Mk−1 are computed given Mk and the filter F k.

Next we discuss the parallelization strategy. A matrix-
matrix multiplication always has one dimension which is
collapsed ((i1 : is) dimension in Fig. 2), and two dimen-
sions which can be parallelized ((h1 : ht) and (j1 : jr) in
Fig. 2). One of these two parallel dimensions is consecutive
in memory ((j1 : jr)) while the other is not ((h1 : ht)). We
follow the same strategy for the convolutional case, where
the dimension we collapse is the loop in line 17 . The di-
mensions to be parallelized are the loops in lines 10 and 15
, where the loop in line 15 is consecutive in memory, as can
be seen in line 18 where c is the inner dimension for the
matrices Mk−1 and F k. All other loops are left serial.

Note that this algorithm can be understood as performing a
separate transpose convolution for every hi. This transpose
convolution is a map from D`−k

hi to D`−k+1
hi . To guarantee

floating point soundness for our algorithm as discussed in
Section 4.1, we optimize an interval-scalar matrix-matrix
multiplication where the coefficients in Mk are intervals
and F k contains the scalar network weights.
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Table 1. Neural networks used in our experiments.
Dataset Model Type #Neurons #Layers Training

MNIST 6× 500 Fully-connected 3,010 6 Normal
ConvBig Convolutional 48K 6 DiffAI
ConvSuper Convolutional 88K 6 Normal
IBP large 0.2, IBP large 0.4 Convolutional 176K 6 CR-IBP

CIFAR10 6× 500 Fully-connected 3,010 6 Normal
ConvBig Convolutional 62K 6 DiffAI
ConvLarge Convolutional 230K 6 DiffAI
IBP large 2 255, IBP large 8 255 Convolutional 230K 6 CR-IBP
ResNetTiny Residual 311K 12 PGD
ResNet18 Residual 558K 18 PGD
ResNetTiny Residual 311K 12 DiffAI
ResNet18 Residual 558K 18 DiffAI
SkipNet18 Residual 558K 18 DiffAI
ResNet34 Residual 967K 34 DiffAI

Algorithm for residual blocks. Algorithm 1 can be used
to backsubstitute through both branches of a residual block
separately, as discussed in Section 3.1. The resulting two
coefficient matrices then need to be added element-wise.
Again we omit the details for space reasons.

Comparison to the parallel CPU implementation. Since
the available parallelism of a modern CPU is at least an
order of magnitude smaller compared to a GPU, the paral-
lelized CPU implementation (Singh et al., 2019b) of Deep-
Poly processes fewer rows of Mk than GPUPoly in paral-
lel. The CPU implementation exploits sparsity in the poly-
hedral expressions when performing backsubstitution from
the convolutional layers by storing the polyhedral expres-
sions with a sparse representation, storing neuron indices
and the corresponding coefficient. This representation does
not exploit the structure of the convolutional layers and is
not suitable for SIMD parallelization. In contrast, we ex-
ploit structured sparsity in convolutional layers via depen-
dence sets which allows us to create smaller dense subma-
trices that are suitable for SIMD parallelization.

Comparison to standard backpropagation. Backprop-
agation (Grund, 1982) is fundamentally different from
DeepPoly backsubstitution because it computes a scalar
loss function and propagates it back to update the net-
work weights while backsubstitution propagates con-
straints backwards. Further, backpropagation is usually
only performed starting from the last layer which typically
contains fewer neurons than the intermediate layers. In
contrast, DeepPoly’s backsubstitution is performed start-
ing from all layers in the network. Thus, we also have to
backsubstitute starting from intermediate convolutional or
residual layers which typically contain orders of magnitude
more neurons than the last layer which makes balancing the
compute and the memory efficiency of the backsubstitution
on GPUs more challenging (Section 3). Overall, based on
the above factors, the DeepPoly backsubstitution is math-

ematically different, computationally more expensive, and
more memory-demanding than backpropagation.

5 EXPERIMENTAL EVALUATION

We now demonstrate the effectiveness of GPUPoly for the
verification of big neural networks in terms of both pre-
cision (number of instances verified) and performance in
terms of runtime. GPUPoly is implemented in C++, sup-
ports 64-bit double and 32-bit single precision, and uses
the CUDA library for GPU support and Cutlass for the tem-
plate metaprogramming of matrix operations in CUDA. We
compare the effectiveness of GPUPoly against two state-
of-the-art verifiers: the CPU parallelized version of Deep-
Poly (Singh et al., 2019b) and the GPU based CROWN-IBP
(CR-IBP) from (Zhang et al., 2020; Xu et al., 2020). We
note that DeepPoly has the same precision as GPUPoly,
however GPUPoly is at least 190x faster, for some net-
works even 68’000x, than DeepPoly. CR-IBP is imple-
mented for GPUs and is more precise than interval bound
propagation (Mirman et al., 2018; Gowal et al., 2018) and
more scalable than CROWN-FULL (Zhang et al., 2018).
We note that CROWN-FULL also has the same precision
as DeepPoly (Salman et al., 2019), however its GPU imple-
mentation from (Zhang et al., 2020; Xu et al., 2020) runs
out of memory on most of our networks, therefore we do
not consider it. Thus CR-IBP is the most precise existing
verifier that can scale to the big neural networks used in our
experiments. We note that unlike GPUPoly and DeepPoly,
CR-IBP is not floating point sound thus its verification re-
sults can be incorrect due to floating point errors (Jia &
Rinard, 2020; Zombori et al., 2021).

Our experimental results show that GPUPoly improves
over the state-of-the-art by providing the most precise and
scalable verification results on all our benchmarks. We be-
lieve that the extra scalability and precision of GPUPoly



Scaling Polyhedral Neural Network Verification on GPUs

Table 2. Experimental results for 10,000 images on fully-connected and convolutional neural networks: CR-IBP vs. GPUPoly.
Dataset Model #Neurons ε #Candidates #Verified Median runtime

CR-IBP GPUPoly CR-IBP GPUPoly

MNIST 6× 500 3,010 8/255 9,844 0 7,291 130 µs 9.06 ms
ConvBig 48K 3/10 9,703 5,312 8,809 220 µs 537 µs
ConvSuper 88K 8/255 9,901 0 8,885 300 µs 266 ms
IBP large 0.2 176K 0.258 9,895 4,071 7,122 190 µs 9.04 ms
IBP large 0.4 176K 3/10 9,820 9,332 9,338 190 µs 2.92 ms

CIFAR10 6× 500 3,010 1/500 5,607 0 4,519 200 µs 8.04 ms
ConvBig 62K 8/255 4,599 1,654 2,650 320 µs 730 µs
ConvLarge 230K 8/255 4,615 1,672 2,838 900 µs 4.54 ms
IBP large 2 255 230K 2/255 7,082 5,450 5,588 820 µs 12.3 ms
IBP large 8 255 230K 8/255 4,540 3,289 3,298 270 µs 3.83 ms

Table 3. Experimental results for 500 images on fully-connected
and convolutional networks: DeepPoly vs. GPUPoly.

Model #Cand. #Verif. Median runtime

DeepPoly GPUPoly

6× 500 493 334 8.3 s 9.06 ms
ConvBig 487 441 12 s 537 µs
ConvSuper 495 428 271 s 266 ms

6× 500 282 219 15 s 8.04 ms
ConvBig 226 127 38 s 730 µs
ConvLarge 232 138 309 s 4.54 ms

can also benefit state-of-the-art robust training methods
(Balunovic & Vechev, 2020; Zhang et al., 2020) in the fu-
ture as they depend on approximate verifiers for training.

Neural networks. We used 16 deep neural networks in
our experiments as shown in Table 1. Out of these, 5 are
MNIST-based (Lecun et al., 1998) and 11 are CIFAR10-
based (Krizhevsky, 2009). Table 1 specifies the network ar-
chitecture, the number of neurons, the number of layers and
the training method for each network. There are 2 fully-
connected, 8 convolutional and 6 residual architectures in
Table 1. The largest network in the table is ResNet34
with 34 layers and ≈1M neurons.

Regarding training, (i) 7 of our networks were trained us-
ing DiffAI (Mirman et al., 2018; 2019) and 4 with CR-IBP
(Zhang et al., 2020), both of which perform provably robust
adversarial training, (ii) 2 of our CIFAR10 networks were
trained using Projected Gradient Descent (PGD) (Madry
et al., 2018; Dong et al., 2018), which amounts to empiri-
cally robust adversarial training, and (iii) the remaining 3
networks were trained in a standard manner. Both methods,
(i) and (ii), aim to increase the robustness of the resulting
neural network which results in a loss of standard accuracy.

In the following we will refer to the non-residual networks
as medium networks and to the residual networks as big
networks.

Experimental setup. All our experiments for CR-IBP and
GPUPoly were performed on a 2.2 GHZ 10 core Intel Xeon
Silver 4114 CPU with 512GB of main memory. The GPU
on this machine was an Nvidia Tesla V100 GPU with 16GB
of memory. The PyTorch version used for running CR-IBP
was 1.3.0 and the CUDA version for GPUPoly was 11.0.
The experiments for the (prior) CPU version of DeepPoly
were performed on a faster 2.6 GHz 14 core Intel Xeon
CPU E5-2690 with 512GB of memory.

Benchmarks. For fully-connected and convolutional net-
works, we consider the full MNIST and CIFAR10 test
sets. For the bigger residual networks, we selected the
first 1, 000 images from the respective test set. We filtered
out the images that were not classified correctly. We call
the correctly classified images from the test set candidate
images. The number of candidates for each network are
shown in Table 2 and Table 4.

For each candidate image I0, we define the L∞(I0, ε)
based adversarial region by selecting challenging values of
ε that are commonly used for testing the precision and scal-
ability of verifiers in the literature. The ε values used for
defining L∞(I0, ε) for each neural network are shown in
Table 2 and 4. We used larger values of ε for testing Dif-
fAI and CR-IBP trained networks since these networks are
more robust than the PGD and normally trained networks.
However, DiffAI and CR-IBP trained networks suffer from
a substantial drop in test accuracy (see #Candidates in Ta-
ble 2 and Table 4). Furthermore, these networks are also
easier to verify and thus even imprecise verifiers like CR-
IBP verify large number of properties on these networks
while GPUPoly takes advantage of the ease of verification
by terminating the backsubstitution early, as explained in
Section 4.2. This leads to the runtimes of GPUPoly being
orders of magnitude smaller on DiffAI and CR-IBP trained
networks compared to normally trained or PGD trained net-
works. We also note that the ε values for MNIST based
networks are larger than for CIFAR10 based networks for
the same reason.
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Table 4. Experimental results for 1,000 images on big CIFAR10 residual networks: our implementation of CR-IBP vs. GPUPoly.
Model #Neurons Training ε #Candidates #Verified Median runtime

CR-IBP GPUPoly CR-IBP GPUPoly

ResNetTiny 311K PGD 1/500 768 0 651 5.3 s 11.7 s
ResNet18 558K PGD 1/500 823 0 648 60 s 397 s

ResNetTiny 311K DiffAI 8/255 371 203 244 5 s 4.03 ms
SkipNet18 558K DiffAI 8/255 321 114 260 40 s 16.5 ms
ResNet18 558K DiffAI 8/255 372 138 268 26 s 16.9 ms
ResNet34 967K DiffAI 8/255 356 126 229 59 s 34.5 ms

5.1 Results on medium networks

Comparison with CR-IBP. Table 2 compares the preci-
sion and the median runtime of CR-IBP and GPUPoly on
the medium fully-connected and convolutional networks
for 10,000 images. We use the implementation of CR-IBP
publicly available from (Zhang et al., 2020). On normally
trained networks, CR-IBP does not prove any properties,
while GPUPoly proves 20, 695 overall. On DiffAI and CR-
IBP trained networks GPUPoly proves an additional 8, 863
properties overall compared to CR-IBP. CR-IBP is more
precise on these networks than on normally-trained net-
works because inexact verifiers only sacrifice precision for
scalability on neurons that are input to a ReLU and can
take both positive and negative values during analysis. The
number of such neurons for networks trained to be prov-
able robust is relatively low. As can be seen, GPUPoly
improves upon the state-of-the-art results. CR-IBP is up
to 45x faster than GPUPoly on provably robust networks,
and over 2,000x faster on normally trained networks. The
speed of CR-IBP comes at the cost of imprecision and the
lack of floating point soundness guarantees.

Distribution of runtimes. The runtimes of GPUPoly for
normally and PGD trained networks are roughly normally
distributed. On the other hand, the cumulative distribution
function (CFD) of runtimes for DiffAI and CR-IBP trained
networks has a big tail of values which are orders of mag-
nitudes larger than the median. This is because the early
termination succeeds in the majority of cases for robustly
trained networks yielding very small runtimes. In the small
number of instances when it fails, the runtime is quite high.
The CFD plots for all networks are in the appendix A.

Comparison with DeepPoly. Table 3 compares the pre-
cision and runtime of DeepPoly and GPUPoly on six of
our medium networks for the adversarial regions created
on the first 500 test images on three MNIST and three CI-
FAR10 networks. The ε values are the same as in Table 2.
While both have the same precision, GPUPoly is up to
250x faster than DeepPoly on normally trained networks
and up to 68,000x faster than DeepPoly on DiffAI trained
networks.

5.2 Results on big residual networks

In Table 4 we compare the precision and runtime of
GPUPoly and CR-IBP on our big residual networks, the
largest being a ResNet34 with almost 1M neurons. Since
CR-IBP does not support residual networks, we used our
own implementation of CR-IBP, which does not employ
many of CR-IBP’s optimizations, such as batching, making
it slower than the original, but equally precise. GPUPoly
proves 1,299 samples for PGD trained networks overall
while CR-IBP cannot prove any. Furthermore GPUPoly
proves 420 additional properties compared to CR-IBP on
DiffAI trained networks. GPUPoly only takes 34.5ms to
verify our largest ResNet34.

6 CONCLUSION

We presented a scalable neural network verifier, called
GPUPoly, for verifying the robustness of various types of
deep neural networks on GPUs. GPUPoly leverages GPU
parallelization, sparsity in convolutional and residual net-
works, and an early termination mechanism. Our work
advances the state-of-the-art by precisely verifying signif-
icantly larger CIFAR10 networks, with up to 1M neurons,
than possible with prior work. Based on our results, we be-
lieve that our work is a step in the direction towards scaling
precise polyhedral analysis to even larger models.
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A CUMULATIVE DISTRIBUTION
FUNCTIONS OF RUNTIMES

Fig. A shows the CDFs of the runtime of GPUPoly for the
different networks. While the runtimes are roughly nor-
mally distributed for normally and PGD trained networks,
the CDFs of the runtimes for DiffAI and CR-IBP trained
networks have large tails on the right side. The reason for
this is that most of the time early termination will result in
a very low runtime for robustly trained networks, but some-
times the runtime can be orders of magnitudes higher.
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Figure 5. CDF plot of the runtime of GPUPoly on the networks shown in Table 1.


