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Abstract
We introduce a scalable method for training robust
neural networks based on abstract interpretation.
We present several abstract transformers which
balance efficiency with precision and show these
can be used to train large neural networks that are
certifiably robust to adversarial perturbations.

1. Introduction
Neural networks are increasingly gaining importance in
critical areas such as facial recognition and autonomous
driving. Szegedy et al. (2013) discovered that even well-
trained neural networks can misclassify inputs which are
seemingly identical to correctly classified ones. Further,
such adversarial examples have been constructed physically
(Athalye & Sutskever, 2017; Evtimov et al., 2017) as well
as in black-box settings (Papernot et al., 2016; 2017).

Gu & Rigazio (2014) provided an early technique for de-
fending against adversarial examples based on adding con-
crete noise to the training set and removing it statistically.
Goodfellow et al. (2014) showed an adversarial attack which
generated examples that were misclassified on a wide ar-
ray of networks, and then demonstrated a defense against
this attack, based on explicit training against perturbations
generated by the attack. Madry et al. (2018) improved on
this style of defense by showing that training against an
optimal attack would provide a defense against non-optimal
attacks as well. While this technique was highly effective in
experiments, Carlini et al. (2017) demonstrated an attack for
the safety-critical problem of ground-truthing, where this
defense in fact occasionally exacerbated the problem.

As heuristic defenses are insufficient to ensure safety, works
such as Gehr et al. (2018) provided methods for certifying
local robustness properties of neural networks. Kolter &
Wong (2017) demonstrated the first defense against adver-
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sarial attacks which provides certificates proving that none
of the training examples could be adversarially permuted, as
well as bounds on the capability of an adversary to influence
performance on a test set. This method is based on com-
puting an overapproximation to the adversarial polytope,
which describes the set of possible neural network outputs
given the region of possible inputs. However, this approach
incurs significant accuracy and scalability overheads. Re-
cent work by Raghunathan et al. (2018) provides certifiable
robustness, but only for neural networks consisting of two
layers. Thus, developing techniques to train large neural net-
works that can be automatically certified free of robustness
violations remains a fundamental challenge.

Abstract Interpretation for Training Neural Networks
We address the above challenge by leveraging the classic
framework of abstract interpretation (Cousot & Cousot,
1977), a general theory for approximating a potentially in-
finite set of behaviors with a finite representation. This
theory has been widely used over the last 40 years to build
large-scale automatic code analyzers (Blanchet et al., 2003).
We show how to bridge abstract interpretation and gradient-
based optimization and how to apply these concepts to train
larger networks. Concretely, we compute an approximation
to the adversarial polytope and use this approximation as
part of our loss function, effectively training the network
on entire regions of the input space at once. This abstract
loss has the advantage of being optimizable via standard
techniques such as gradient descent and, as we demonstrate,
networks trained in this manner are more provably robust.

Main Contributions Our main contributions are:

• A new method for training neural networks based on
abstract interpretation (Sections 2 and 5).

• Novel abstract transformers for the zonotope domain
which are parallelizable and suited for differentiation
and gradient descent (Sections 3 and 4).

• A complete implementation of the method in a system
called DIFFAI1 together with an extensive evaluation
on a range of datasets and architectures. Our results
show that DIFFAI improves provability of robustness
and scales to large networks (Section 6).

1Available at: http://diffai.ethz.ch

http://diffai.ethz.ch
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2. Robustness and Sound Approximations
In this section we review and formally define the concept of
robustness and discuss an approach to robustness via sound,
computable approximations.

LetNθ : Rd → Rk be a neural network with d input features
and k output classes, parameterized by weights θ. The
network Nθ assigns the class i ∈ {1, . . . , k} to the point
x ∈ Rd if Nθ(x)i > Nθ(x)j for all j 6= i.

Let Bε(x) denote the `∞-ball of radius ε around a point
x ∈ Rd. A network Nθ is called ε-robust around a point
x ∈ Rd ifNθ assigns the same class to all points x̃ ∈ Bε(x).

More generally, a network Nθ is called π-robust around x
if it assigns the same class to all points in x̃ ∈ π(x), where
π : Rd → P(Rd) describes the capabilities of an attacker.
In particular, Nθ is ε-robust if it is π-robust for π = Bε.

Given a set of labeled training examples {(xi, yi)}ni=1, the
goal of adversarial training is to find a θ such that: (i) Nθ
assigns the correct class yi to each example xi, and (ii) Nθ
is π-robust around each example xi.

Definition 2.1. Given a loss function L(z, y) which is
non-negative if arg maxi zi 6= y and strictly negative if
arg maxi zi = y, we define the worst-case adversarial loss
LN on a labeled example (x, y) with respect to network N :

LN (x, y) = max
x̃∈π(x)

L(N(x̃), y).

Intuitively, the worst-case adversarial loss is the maximal
loss that an attacker can obtain by perturbing the example
x to an arbitrary x̃ ∈ π(x). For a given labeled example
(x, y), we call a point x̃ ∈ π(x) that maximizes L(N(x̃), y)
a worst-case adversarial perturbation.

Using the worst-case adversarial loss, we can formulate
adversarial training as the following optimization problem:

min
θ

max
i
LNθ (xi, yi).

If the value of the solution is negative, Nθ classifies all
training examples correctly and is π-robust around all points
in the training set.

Optimizing Over Sound Approximations It is usually
very difficult to find a worst-case adversarial perturbation in
the ε-ball around an example. Madry et al. (2018) strengthen
the network using a heuristic approximation of the worst-
case adversarial perturbation and show that the method is
practically effective. Kolter & Wong (2017) propose an
approach where a superset of the possible classifications
for a particular example is determined and the optimization
problem is stated in terms of this overapproximation. At
a high level, we take a similar approach, but we introduce

sound approximations that scale to larger networks and are
easier to work with.
Definition 2.2. A sound approximation of a given function
f : Rd → Rk under perturbations π : Rd → P(Rd) is a
function Af,π : Rd → P(Rk), such that for every x ∈ Rd,
we have that f(π(x)) ⊆ Af,π(x).

To avoid clutter, we usually write f(S) (as in the above
definition) as shorthand for the image of S ⊆ Rd under f .

Sound approximations can be used to prove robustness
properties: for example, if we can show that all values
z̃ ∈ AN,Bε(x) share the same arg maxi z̃i, then the net-
work N is ε-robust around the point x.
Definition 2.3. Given a sound approximation AN,π, the
approximate worst-case adversarial loss LAN is given by

LAN (x, y) = max
z̃∈AN,π(x)

L(z̃, y).

The worst-case adversarial loss LN can be expressed equiv-
alently as LAN using AN,π(x) = N(π(x)). Therefore, as by
definition, we have N(π(x)) ⊆ AN,π(x), it follows that
LN (x, y) ≤ LAN (x, y).

This means that if we choose A such that: (i) we can com-
pute LAN , and (ii) we can find θ where maxi LANθ (xi, yi)
is negative, then we have proven the neural network Nθ
correct and ε-robust for the entire training set.

While the above does not imply that Nθ is ε-robust on the
test set, we find that approximating the optimal θ in

min
θ

max
i
LANθ (xi, yi)

produces networks Nθ that can often be proven robust
around previously unseen test examples using the sound
approximation A. That is, provable robustness generalizes.

3. Abstract Interpretation
We will approximate neural networks using abstract inter-
pretation (Cousot & Cousot, 1977). Abstract interpretation
has been recently used to certify robustness of neural net-
works (Gehr et al., 2018). It has also been used to find
constants in small programs using black-box optimization
by Chaudhuri et al. (2014), who approximate abstract trans-
formers for a particular probabilistic domain by families
of continuous functions. We now introduce the necessary
general concepts and our specific instantiations.
Definition 3.1. An abstract domain D is a set equipped
with an abstraction function α : P(Rp) → D and a con-
cretization function γ : D → P(Rp) for some p ∈ N.

Intuitively, an element d ∈ D corresponds to a set of sym-
bolic constraints over Rp and γ(d) determines the set of
points that satisfy the constraints d. The abstraction func-
tion α is defined such that X ⊆ γ(α(X)) for each X ⊆ Rp.
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Figure 1. A visualization of abstract interpretation applied on a
neural network with convolutional and fully connected layers.

Definition 3.2. A (computable) function T#
f : D → D′ is

called an abstract transformer for a function f : Rp → Rp′

if f(γ(d)) ⊆ γ′(T#
f (d)) for all d ∈ D.

Intuitively, an abstract transformer T#
f overapproximates

the behavior of a function f on a set γ(d) by operating di-
rectly on a symbolic representation d ∈ D to produce a new
abstract element d′ ∈ D′ whose concretization overapproxi-
mates the image of f under γ(d).

Abstract transformers compose: If T#
f and T#

g are abstract
transformers for functions f and g, then T#

f ◦ T#
g is an

abstract transformer for f ◦ g. Therefore, it suffices to
define abstract transformers for each basic operation in a
neural network N . If we then write the neural network
as a composition of basic operations, we can immediately
derive an abstract transformer T#

N for the entire N . This
abstract transformer T#

N induces a sound approximation
AN,π(x) = γ(T#

N (α(π(x)))) in the sense of Definition 2.2.

We apply abstract interpretation to compute T#
N (α(π(x))),

which describes a superset of the possible outputs of the
neural networkN under perturbations π. Figure 1 illustrates
how abstract interpretation overapproximates the behavior
of a network on a concrete set of inputs π(x) = Bε(x). For
each intermediate abstract result, γ yields a superset of the
corresponding intermediate concrete result (analysis always
happens in the abstract, γ is only used to ensure soundness).

We next discuss the abstract domains we use in this work.

Interval Domain The simplest domain we consider is
the interval (also called Box) domain. Abstract interpreta-
tion using this domain is equivalent to computation using
standard interval arithmetic. Each element of the domain
represents a p-dimensional box, described by its center and
deviations in each component. We use this representation
for two reasons: (i) it makes the transformations for multipli-
cation and addition efficiently parallelizable on a GPU, and
(ii) it exposes essential relationships between our presenta-
tion of interval and zonotope domains (discussed below).

An element of the domain is a pair b = 〈bC, bB〉 where

bC ∈ Rp is the center of the box, while bB ∈ Rp≥0 describes
(non-negative) deviations. The concretization function γI is:

γI(b) = {bC + diag(bB) · β | β ∈ [−1, 1]p}.

Here, diag(bB) creates a diagonal p×p matrix where the en-
tries on the diagonal are those of bB, and β is an error vector
used to pick a particular element of the concretization.

Definition 3.3. The total error of the i-th component of a
box b is εI(b)i = (bB)i and the interval concretization of the
i-th component of b is given by

ιI(b)i = [(bC)i − εI(b)i, (bC)i + εI(b)i].

Zonotope Domain Interval arithmetic can be imprecise
as it does not keep information on how values of variables
are related. The zonotope domain (Ghorbal et al., 2009)
aims to preserve some of these relationships. Unlike the
interval domain, where each error term is associated to a
particular component, the zonotope domain freely shares
error terms among components. In this way, some amount
of dependency information can be encoded at moderate
costs. The most important feature of the zonotope domain
is that there exists an abstract transformer for affine func-
tions (such as the transition function of a fully connected or
convolutional layers) which does not lose precision.

An element of the zonotope domain is a pair z = 〈zC, zE〉
where zC ∈ Rp is the center of the zonotope, while
zE ∈ Rp×m describes a linear relationship between the
error vector e ∈ [− 1, 1]m and the output components (for
arbitrary m). The concretization function γZ is given by

γZ(z) = {zC + zE · e | e ∈ [−1, 1]m}.

Definition 3.4. The total error of the i-th component of
a zonotope z is εZ(z)i =

∑m
j=1 |(zE)i,j | and the interval

concretization of the i-th component of z is given by

ιZ(z)i = [(zC)i − εZ(z)i, (zC)i + εZ(z)i].

The zonotope domain is strictly more expressive than the
interval domain: for a box b, its corresponding zonotope z
is given by zC = bC, zE = diag(bB).

Hybrid Zonotope Domain While the zonotope domain
is more precise than interval, its transformers are less effi-
cient. The hybrid zonotope domain, introduced originally
as perturbed affine arithmetic by Goubault & Putot (2008),
aims to address this issue: its transformers are more accurate
than interval, but more efficient than zonotope.

An element of this domain is a triple h = 〈hC, hB, hE〉where
hC ∈ Rp is the center, hB ∈ Rp≥0 contains non-negative
deviations for each component (similar to interval domain),
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and hE ∈ Rp×m describes error coefficients (similar to
zonotope domain). The concretization γH is given by

γH(h) = {ĥ(β, e) | β ∈ [−1, 1]p, e ∈ [−1, 1]m},

where ĥ(β, e) = hC + diag(hB) · β + hE · e.
Definition 3.5. The total error of the i-th component of a
hybrid zonotope h, is εH(h)i = (hB)i+

∑m
j=1 |(hE)i,j |, and

the interval concretization of the i-th component of h is

ιH(h)i = [(hC)i − εH(h)i, (hC)i + εH(h)i].

This domain is equally expressive as the zonotope domain
but can represent interval constraints more efficiently. Fur-
ther, the abstract transformers of this domain treat a hybrid
zonotope differently than they would treat a zonotope with
the same concretization, due to the deviation coefficients.

A box b can be expressed efficiently as a hybrid zonotope
h with hC = bC, hB = bB and m = 0. A zonotope z can
be expressed as a hybrid zonotope h with hC = zC, hB = 0
and hE = zE.

4. Abstract Transformers for Zonotope
We now introduce our abstract transformers for the hybrid
zonotope domain, specifically ReLU transformers which
balance precision with scalability. The transformers are
“point-wise”: they are efficiently executable on a GPU and
can benefit both training and analysis of the network.

There are three basic types of abstract transformers, those
that: (i) increase the deviations, (ii) introduce new error
terms producing a hybrid zonotope h′ with m′ > m, and
(iii) handle deviations and error coefficients separately and
do not introduce new error terms. We first discuss the trans-
formers of type (iii). For this type, the transformers of the
interval and zonotope domains arise as special cases.

Addition We first consider a function f that replaces the
i-th component of the input vector x ∈ Rp by the sum of
the j-th and k-th components:

f(x) = (x1, . . . , xi−1, xj + xk, xi+1, . . . , xp)T .

The corresponding abstract transformer is given by

T#
f (h) = 〈M · hC,M · hB,M · hE〉,

where the matrix M ∈ Rp×p is such that M · x replaces the
i-th row of x by the sum of the j-th and k-th rows.

Multiplication Consider a function f that multiplies the
i-th component of the input vector x ∈ Rp by a known
constant κ ∈ R:

f(x) = (x1, . . . , xi−1, κ · xi, xi+1, . . . , xp)T .

The abstract transformer T#
f for this operation is simple and

does not lose any precision. We define

T#
f (h) = 〈Mκ · hC,M|κ| · hB,Mκ · hE〉,

where Mα = I + diag((α− 1) · ei). Here, I is the identity
matrix and ei is the i-th standard basis vector.

Matrix Multiplication and Convolution Consider a
function f that multiplies the input vector x ∈ Rp by a
known matrix M ∈ Rp′×p:

f(x) = M · x.

Combining the insights from the addition and multiplication
transformers, the abstract transformer T#

f is given by

T#
f (h) = 〈M · hC, |M | · hB,M · hE〉.

Here, |M | simply performs component-wise absolute value
operation. The above transformer can be easily differenti-
ated and parallelized on the GPU. As convolutions are linear
operations, the same approach can be applied for these.

ReLU ReLU is a simple nonlinear activation function:

ReLU(x) = max(x, 0).

In contrast to the abstract transformers discussed so far,
there is no single best ReLU abstract transformer for the
hybrid zonotope domain. Instead, there are many possible,
pairwise incomparable, abstract transformers T#

ReLU.

Abstract domainsD usually support a join operator (t) such
that for all abstract elements d, d′ ∈ D, we have

γ(d) ∪ γ(d′) ⊆ γ(d t d′),

and a meet-with-linear-constraint operator (u) such that for
all linear constraints L(x) = xi < 0 or L(x) = xi ≥ 0 for
1 ≤ i ≤ p, we have

γ(d) ∩ {x | L(x)} ⊆ γ(d u L).

In this case, we can define the abstract trans-
former for ReLU in a general way. Let
fi(x) = (x1, . . . , xi−1, 0, xi+1, . . . , xp) be the func-
tion that assigns 0 to the i-th component of the input vector.
The abstract transformer for ReLU can then be defined as

T#
ReLU = T#

ReLUp ◦ T
#
ReLUp−1

◦ · · · ◦ T#
ReLU2

◦ T#
ReLU1

,

where T#
ReLUi(d) = d u (xi ≥ 0) t T#

fi
(d u (xi < 0)).

ReLUi applies ReLU only to the i-th component of the
input vector. While Goubault et al. (2012) demonstrate that
accurate join and meet are possible for a hybrid zonotope
domain, they take Ω(m3 +m2 · p) time in the worst case,
which is significant in the case of deep neural networks.
Further, ReLU defined in this way is not parallelizable as
the application of ReLU in each component is dependent on
the application in the previous component.
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Point-wise Abstract Transformers for ReLU We de-
fine several novel zonotope transformers for the functions
ReLUi. Each modifies the i-th component of the input zono-
tope and does not depend on any other component (hence,
“point-wise”). As a result, the result can be computed in par-
allel for all components, enabling scalable ReLU analysis.
Definition 4.1 (zBox ReLU transformer). For a zonotope z
and index i, we define z′ = T

#(zBox)
ReLUi (z) with m′ = m+ 1.

If min(ιi(z)) ≥ 0, then z′ is z with an additional unused
error term, meaning new entries in z′E are set to 0. Otherwise

(z′X)t = (zX)t, for X ∈ {C,E}, t 6= i,
(z′C)i = ReLU( 1

2 max(ι(z)i)),
(z′E)i,l = 0, for l ≤ m,

(z′E)i,m+1 = ReLU( 1
2 max(ι(z)i)),

(z′E)j,m+1 = 0, for j 6= i.

T
#(zBox)
ReLUi (z) propagates the input zonotope unchanged if it

can prove the i-th component is non-negative (then ReLUi
has no effect). Otherwise, it bounds the i-th component of
the output by a suitable independent interval using the new
error term. In both cases, the number of error terms in z′ is
the same, allowing for more effective parallelization.

We also define a transformer which uses the above trans-
former with incomparable precision.
Definition 4.2 (zDiag ReLU transformer). Given a zono-
tope z and index i, we define a ReLU abstract transformer
z′ = T

#(zDiag)
ReLUi (z) where m′ = m + 1. If the condition

min(ι(z)i) < 0 < max(ι(z)i) holds, we have

(z′X)t = (zX)t for X ∈ {C,E}, t 6= i,
(z′C)i = (zC)i − 1

2 min(ι(z)i),
(z′E)i,l = (zE)i,l for l ≤ m,

(z′E)i,m+1 = − 1
2 min(ι(z)i),

(z′E)j,m+1 = 0, for j 6= i.

Otherwise, z′ = T
#(zBox)
ReLUi (z).

Finally, we define two transformers which combine zBox
and zDiag in different ways.
Definition 4.3 (zSwitch ReLU transformer). Transformer
T

#(zSwitch)
ReLUi uses T#(zBox)

ReLUi if |min(ι(z)i)| > |max(ι(z)i)|.
Otherwise, it uses T#(zDiag)

ReLUi .
Definition 4.4 (zSmooth ReLU transformer). Transformer
T

#(zSmooth)
ReLUi takes a weighted average of the results of

T
#(zBox)
ReLUi and T

#(zDiag)
ReLUi , with weights |min(ι(z)i)| and

|max(ι(z)i)| respectively.

Point-wise ReLU for Hybrid Zonotopes The hybrid
zonotope transformers (hSwitch, hSmooth) operate the same
way as the respective zonotope versions (zSwitch, zSmooth),
but they do not add new error terms. Instead, they accumu-
late the computed error in the i-th component of hB.

5. Adversarial Training
We now introduce adversarial training with our domains.

5.1. Approximate Worst-Case Adversarial Loss

Let the loss L(z, y) = maxy′ 6=y(zy′ − zy). This loss satis-
fies the requirements for adversarial training from Defini-
tion 2.1. Let us define our approximate worst-case adversar-
ial loss by instantiating AN,π(x) from Definition 2.3 as

AN,π(x) = γ(T#
N (α(π(x))).

This means that we take the region π(x), abstract it so it
can be captured in our abstract domain, obtain α(π(x)), and
then apply the neural network transformer T#

N (as discussed
so far) to that result. For π = Bε, the expression α(π(x))
corresponds to a simple interval constraint that can be com-
puted easily for each of the discussed abstract domains.
Once we obtain the abstract output of the transformer, we
can apply γ to obtain all concrete output points represented
by this result. With this instantiation we obtain the loss

LAN (x, y) = max
z̃∈γ(T#

N
(α(π(x))))

L(z̃, y).

This is the approximate worst-case adversarial loss when
we use abstract interpretation for approximation. We can
compute the loss LAN (x, y) using

LAN (x, y) = max
y′ 6=y

(max ι(T#
fy′

(T#
N (α(π(x)))))),

provided the following conditions hold: (i) an interval con-
cretization function ι exists for which we can compute inter-
val upper bounds max ι(x), (ii) we can compute α(π(xi)),
and (iii) the linear function fy′(z) = zy′ − zy has a precise
abstract transformer T#

fy′
. All three of these conditions hold

for the interval, zonotope and hybrid zonotope domains.

5.2. Line Segments as (Hybrid) Zonotopes

a

Figure 2. Visualizing
line segment training
with 3 classifications.

We show how to consider input re-
gions in other shapes beyond the
standard `∞-balls used in local ro-
bustness properties. We use the
observation that when two points
with the same classification in the
training set are close enough, the
points on the line between them
should be classified the same. Fig-
ure 2 shows an intuitive illustra-
tion. Black dots represent data and
grey regions represent the ground
truth classifications. The network
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Train Time (s/epoch) Total Testing Time (s)

Dataset Model Type # Hidden Units # Parameters Baseline Box Box hSwitch

MNIST

FFNN fully connected 510 119910 0.610 2.964 0.076 0.184
ConvSmall convolutional 3604 89606 0.560 4.014 0.056 0.360
ConvBig convolutional 34688 893418 1.839 7.229 0.060 7.431
ConvSuper convolutional 88500 10985962 4.391 15.743 0.080 12.856
Skip residual 71600 6301890 3.703 12.613 0.073 11.313

CIFAR10

FFNN fully connected 510 348710 1.273 4.145 0.066 1.018
ConvSmall convolutional 4852 125318 0.718 3.979 0.065 1.870
ConvMed convolutional 6244 214918 1.462 5.200 0.051 1.953
ConvBig convolutional 62464 2466858 6.585 21.539 0.062 11.372
ConvSuper convolutional 124128 16229418 23.416 74.247 0.089 40.270
Skip residual 97730 8760802 14.245 42.482 0.083 25.198

Table 1. A table showing the size of our networks, the time it takes to train one epoch (averaged over 200 epochs), and the best total
testing time for 500 samples, with the maximum batch size allowable by the GPU memory for each domain and network combination.
The testing times are for a baseline-trained network, the times for a Box-trained network are similar.

learns to classify points in the yellow, green, and blue re-
gions. Data points only actually appear within a smaller
shell within the class boundary (dotted lines). The red lines
connecting the points show how these points are grouped
into line abstractions. Marker “a” shows a bad scenario,
where one of the abstractions comes near the ground truth
class boundary. We experimented with encoding the seg-
ment between nearby points instead of simple robustness
regions, aiming to improve the result of training. In terms of
encoding, with a zonotope, we can conveniently represent a
line segment between two points x and y as follows:

(zC)i = 1
2(xi + yi), (zE)i,1 = 1

2 |xi − yi| .

For hybrid zonotopes, we additionally consider a width
parameter w:

(hC)i = 1
2(xi + yi), (hB)i = w, (hE)i,1 = 1

2 |xi − yi| .

6. Experimental Evaluation
We implemented our approach in a system called DIFFAI2

and evaluated it extensively across a range of datasets and
network architectures. We demonstrate that DIFFAI training
scales to networks larger than those of prior work and that
networks trained with DIFFAI are more provably robust
than those trained with state-of-the-art defenses.

6.1. Experimental Setup

Our system is built on top of PyTorch (Paszke et al., 2017).
For all of our experiments, we used the Adam Optimizer
(Kingma & Ba, 2014), with the default parameters and a

2Available at: http://diffai.ethz.ch

learning rate (lr) of 0.0001, unless otherwise specified. Ad-
ditionally, we used norm-clipping on the weights after every
batch with a max-norm of 10, 000. For training we use a
batch size of 500. For testing, batch sizes vary from network
to network depending on the experiment and the GPU used.
We ran on a GeForce GTX 1080 Ti, and a K80. For all
comparisons on a single network and dataset (shown in the
tables), we used the same initial weights and presented the
models with the same batches. In all experiments, accuracy
and provability is tested on 500 samples.

We evaluate DIFFAI on four different datasets: MNIST,
CIFAR10, FashionMNIST (F-MNIST) and SVHN. Before
analysis, we normalize the inputs as described by LeCun
et al. (2012). Specific normalization constants are explained
in the supplementary material.

We also consider networks of various sizes, shown in Table 1
(sizes for SVHN are the same as CIFAR10 and sizes for
FashionMNIST are the same as MNIST).

Training While we did find that it was often possible to
train entirely using the loss function described in Section 5.1,
we achieved better results by combining it with a standard
cross-entropy loss function during training. Furthermore,
we found that the loss in Section 5.1 continued to provide
gradient information to the optimizer long after the example
was proven correct, which was detrimental to learning for
other examples. We found that applying a smooth version
of ReLU – softplus (Dugas et al., 2001) – to this loss helped
to avoid this issue. Our combined loss is therefore

Lθ(x, y) = λ·softplus(LANθ (x, y))+H(softmax(Nθ(x)), y),

where λ is set to 0.1 in all of our experiments (except line
training). The total loss for a batch is obtained by adding
the losses for all examples in the batch.

http://diffai.ethz.ch
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Lower Bound % Upper Bound %

Dataset ε lr Model Train Method Total Train Time (s) Test Error % PGD Box hSwitch

MNIST 0.1 10−3

ConvBig
Baseline 367.80 0.8 3.0 100.0 100.0
PGD 1847.76 0.2 1.6 100.0 99.8
Box 1445.76 1.0 2.4 14.0 3.4

ConvSuper
Baseline 878.28 1.6 2.4 100.0 97.2
PGD 4867.56 1.2 1.6 100.0 88.8
Box 3148.68 1.0 2.8 11.8 3.6

Skip
Baseline 731.40 1.4 3.8 100.0 100.0
PGD 3935.04 1.0 2.0 100.0 83.4
Box 2734.44 1.6 4.4 13.6 5.8

CIFAR10 0.007 10−4

ConvBig
Baseline 1317.00 32.4 36.2 100.0 100.0
PGD 8574.72 31.4 35.8 100.0 100.0
Box 4307.88 55.0 58.6 76.4 61.4

ConvSuper
Baseline 4683.24 37.4 42.4 100.0 100.0
PGD 29828.52 35.4 41.0 100.0 100.0
Box 14849.40 52.8 59.2 83.8 64.2

Skip
Baseline 802.92 36.8 41.8 100.0 88.0
PGD 4828.68 33.6 40.2 100.0 82.8
Box 2980.92 38.0 45.4 72.2 47.8

Table 2. Results on time, test error, and adversarial bounds after 200 epochs with L2 regularization constant of 0.01 and 5 PGD iterations.

6.2. Comparing Against Prior Defenses and Analyzers

We evaluated the performance of DIFFAI using `∞-balls
and Box training against standard baseline training. We
also trained with the state-of-the-art defense of Madry et al.
(2018), which permutes each batch using the untargeted
PGD attack. The adversarial test error is the largest error
an adversary can achieve by perturbing all examples in the
test set. As we cannot efficiently compute the adversarial
test error, we instead give lower and upper bounds using the
PGD attack and DIFFAI respectively. Some of our results
are shown in Table 2 (all results are in the supplementary).

Scalability of Training To our knowledge, we analyzed
and defended the largest networks considered so far in the
context of provable robustness, in terms of both number of
neurons and weights. As shown in Table 1, we were able
to train a network (ConvSuper on CIFAR10) with 124000
neurons and over 16 million weights in under 75 seconds per
epoch for a total time of less than 5 hours. The net trained
is larger than the largest considered by Kolter & Wong
(2017), who took 10 hours to train a significantly smaller
network, and do not report stand-alone testing speed. Often,
DIFFAI’s Box training is even faster than PGD training with
5 iterations. For ConvSuper on CIFAR10 in Table 2, Box
took under 4.5 hours to train, while PGD took over 8 hours.

Scalability of Testing DIFFAI can also analyze large net-
works: for a given example, it can verify ConvSuper on
CIFAR10 in under 2× 10−4 seconds with Box and 0.1 sec-

onds with hSwitch. This is an order of magnitude speed-up
over the current state-of-the-art (Gehr et al., 2018).

Applicability to Complex Nets We also trained and
tested a network, Skip, with a residual connection (He et al.,
2016) for all datasets. Scalability results for MNIST and
CIFAR10 are shown in Table 1, and the adversarial perfor-
mance of Box training is shown in Table 2. While Skip is
quite wide, it is only 5 layers deep with only one residual
connection, using concatenation instead of addition.

Provability PGD defense tends to slightly improve ac-
curacy over baseline and those networks are typically less
attackable by a PGD attack than box-trained ones. However,
box-trained networks are more provably robust (via Box or
hSwitch) than PGD-defended networks. Table 2 also shows
that Box training produces more provably robust networks
than baseline and often, with little loss of accuracy.

DIFFAI achieved consistently below 4% test error on the
MNIST benchmark for convolutional networks, as can be
seen in Table 2 (and in supplementary). When trained using
Box, ConvSuper achieves 1% test error and DIFFAI can
prove an upper bound of 3.6% on the adversarial test error,
close to the lower bound of 2.8% given by PGD. In contrast,
baseline training produced a network which is less accurate
and could not be proved robust for any test example.

In both Table 2 and Table 3, hSwitch and zSwitch always
produce better upper bounds than Box. In theory, these
domains are incomparable to Box, however, in practice,
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Lower Bound % Upper Bound %

Dataset ε Epochs Model Train Method Train Time (s) Test Error % PGD Box zSwitch

F-MNIST 0.1 200 FFNN
Baseline 119 5.4 98.8 100.0 100.0
Box 608 91.4 91.4 100.0 100.0
hSmooth 4316 15.6 71.8 100.0 79.0

CIFAR10 0.03 20 ConvSmall
Baseline 572 35.0 54.8 100.0 83.8
Box 999 44.2 56.4 77.6 63.0
hSmooth 36493 38.0 53.6 99.8 62.6

SVHN 0.01 20 ConvSmall
Baseline 700 15.8 83.6 100.0 98.0
Box 1223 27.0 78.4 92.6 89.8
hSmooth 43859 19.6 78.4 98.4 89.0

Table 3. Results showing that training with hSmooth can lead to improved accuracy (and upper bounds) over training with Box.
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(a) MNIST with w = 0.05
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Figure 3. Accuracy of segment training on FFNN. No regulariza-
tion and learning rate of 0.001. (a) Batch size 200 for Baseline
and 20 for hSwitch and zSmooth; λ of 105. (b) Batch size 150
for Baseline and 30 for zSmooth. λ scheduled with a power of 10
over 105 examples starting at 10−6 and ending at 10−4.

they are typically significantly more precise. As testing with
Box is essentially free, and hSwitch is quite efficient, we
suggest testing with both and selecting the lower value.

Training with Accurate Domains Occasionally, training
with Box led to much lower accuracy. In these cases, we
attempted to improve the accuracy by instead training with
the more accurate (and more expensive) hSmooth domain.
Results can be seen in Table 3, where for example the FFNN
network for F-MNIST has 91.4% testing error when trained
with Box and 15.6% error when trained with hSmooth.

As training with hSmooth is significantly less space efficient
and cannot be done with batches on convolutional networks,
a smaller network was used, ConvSmall, to demonstrate
this point. In CIFAR10 for example, hSmooth produced
a network nearly as accurate as ConvSuper trained using
baseline. This was accomplished with little reduction to
provable robustness (when testing with zSwitch).

6.3. Segment Training for Higher Accuracy

To test DIFFAI on more complex abstract regions, we
trained with line segments connecting examples, as de-
scribed in Section 5.2. For every element in a batch, we
built a zonotope connecting it to the nearest (in terms of `2
distance) other element in the batch with the same class.

The plot in Figure 3 demonstrates that line segment training
improves accuracy. After 10 epochs and 1.5 hours, hSwitch
with line segment training reached the highest accuracy of
74.7% for SVHN. After 20 epochs and 10 hours, zSwitch
and hSwitch both reached an accuracy of 97.4% for MNIST,
significantly higher than the 70% achieved by the baseline.

7. Conclusion
We showed how to apply abstract interpretation for defend-
ing neural networks against adversarial perturbations and
introduced several zonotope transformers which carefully
balance precision with scalability. Our results indicate the
training approach scales to networks larger than those of
prior work and the resulting networks are more provably
robust than networks trained with state-of-the-art defenses.
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A. Dataset Normalization
We normalized the datasets using an approximated mean µ
and standard deviation σ per channel as X−µ

σ .

MNIST
µ = 0.1307
σ = 0.3081

CIFAR10

µ = [0.4914, 0.4822, 0.4465]
σ = [0.2023, 0.1994, 0.2010]

SVHN
µ = [0.5, 0.5, 0.5]
σ = [0.2, 0.2, 0.2]

F-MNIST not normalized.

B. Neural Networks Evaluated
We train six networks: one feed forward, four convolutional
(without maxpool), and one with a residual connection. In
the following descriptions, we use ConvsC ×W × H to
mean a convolutional layer that ouputs C channels, with
a kernel width of W pixels and height of H , with a stride
of s which then applies ReLU to every output. FC n is
a fully connected layer which outputs n neurons without
automatically applying ReLU.

FFNN A 5 layer feed forward net with 100 nodes in each
and a ReLU after each layer. This network has a ReLU after
the last layer.

ConvSmall Our smallest convolutional network with no
convolutional padding.

x→ Conv216×4×4→ Conv232×4×4→ FC 100→ z.

ConvMed The same as ConvSmall, but with a convolu-
tional padding of 1.

x→ Conv216×4×4→ Conv232×4×4→ FC 100→ z.

ConvBig A significantly larger convolutional network
with a convolutional padding of 1.

x → Conv132× 3× 3→ Conv232× 4× 4
→ Conv164× 3× 3→ Conv264× 4× 4
→ FC 512→ ReLU→ FC 512→ z.

Name Source Ex/Epoch Inp Dim
MNIST LeCun et al. (1998) 60000 1 × 28 × 28
F-MNIST Xiao et al. (2017) 60000 1 × 28 × 28
CIFAR10 Krizhevsky (2009) 50000 3 × 32 × 32
SVHN Netzer et al. (2011) 73257 3 × 32 × 32

Table 4. The datasets we evaluate with. All use 10 classifications.

ConvSuper Our largest convolutional network with no
padding.

x → Conv132× 3× 3→ Conv132× 4× 4
→ Conv164× 3× 3→ Conv164× 4× 4
→ FC 512→ ReLU→ FC 512→ z.

Skip Two convolutional networks of different sizes, which
are then concatenated together. This network uses no con-
volutional padding.

x → Conv116× 3× 3
→ Conv116× 3× 3
→ Conv132× 3× 3→ FC 200→ o1,

x → Conv132× 4× 4
→ Conv132× 4× 4→ FC 200→ o2,

CAT(o1, o2) → ReLU→ FC 200→ ReLU → z.

C. Training Results
For all experiments (except with segment training), we
trained with an L2 regularization constant of 0.01, and a λ
of 0.1. We halt training after 200 epochs. For MNIST, we
used a learning rate of 10−3. For all other experiments, the
learning rate was 10−4. For both testing and training, we
used the untargeted PGD attack with k = 5 iterations. At
testing time, we used 500 examples.
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Lower Bound % Upper Bound %

Model Train Method Total Train Time (s) Test Error % PGD Box hSwitch

FFNN
Baseline 121.92 2.4 40.8 100.0 100.0
PGD 368.76 1.0 3.8 100.0 100.0
Box 592.80 5.6 13.6 33.0 53.0

ConvSmall
Baseline 123.36 1.2 2.4 100.0 49.8
PGD 515.64 0.8 1.8 100.0 22.2
Box 690 2.4 4.4 17.8 5.8

ConvBig
Baseline 367.80 0.8 3.0 100.0 100.0
PGD 1847.76 0.2 1.6 100.0 99.8
Box 1445.76 1.0 2.4 14.0 3.4

ConvSuper
Baseline 878.28 1.6 2.4 100.0 97.2
PGD 4867.56 1.2 1.6 100.0 88.8
Box 3148.68 1.0 2.8 11.8 3.6

Skip
Baseline 731.40 1.4 3.8 100.0 100.0
PGD 3935.04 1.0 2.0 100.0 83.4
Box 2734.44 1.6 4.4 13.6 5.8

Table 5. MNIST with ε = 0.1

Lower Bound % Upper Bound %

Model Train Method Total Train Time (s) Test Error % PGD Box hSwitch

FFNN
Baseline 120.84 3.0 99.0 100.0 100.0
PGD 357.48 2.0 10.2 100.0 100.0
Box 570.84 13.4 50.6 77.8 84.4

ConvSmall
Baseline 124.44 1.6 20.2 100.0 100.0
PGD 518.64 1.8 4.6 100.0 100.0
Box 678.36 3.2 9.0 28.2 19.4

ConvBig
Baseline 368.76 2.4 18.2 100.0 100.0
PGD 1863.12 1.6 4.0 100.0 100.0
Box 1436.40 3.4 6.2 23.2 18.0

ConvSuper
Baseline 895.56 1.2 15.0 100.0 100.0
PGD 5021.28 1.0 1.0 100.0 100.0
Box 3216.72 2.8 8.0 19.0 23.0

Table 6. MNIST with ε = 0.3
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Lower Bound % Upper Bound %

Model Train Method Total Train Time (s) Test Error % PGD Box hSwitch

FFNN
Baseline 254.52 53.4 73.8 100.0 100.0
PGD 956.64 45.4 53.6 100.0 100.0
Box 829.08 48.6 57.8 84.4 65.4

ConvMed
Baseline 292.44 40.2 44.0 100.0 54.0
PGD 1472.16 38.8 43.6 100.0 52.4
Box 1040.04 42.8 46.4 74.6 47.8

ConvBig
Baseline 1317.00 32.4 36.2 100.0 100.0
PGD 8574.72 31.4 35.8 100.0 100.0
Box 4307.88 55.0 58.6 76.4 61.4

ConvSuper
Baseline 4683.24 37.4 42.4 100.0 100.0
PGD 29828.52 35.4 41.0 100.0 100.0
Box 14849.40 52.8 59.2 83.8 64.2

Skip
Baseline 802.92 36.8 41.8 100.0 88.0
PGD 4828.68 33.6 40.2 100.0 82.8
Box 2980.92 38.0 45.4 72.2 47.8

Table 7. CIFAR10 with ε = 0.007

Lower Bound % Upper Bound %

Model Train Method Total Train Time (s) Test Error % PGD Box hSwitch

FFNN
Baseline 263.16 57.6 96.8 100.0 100.0
PGD 1000.68 46.6 46.6 61.4 100.0
Box 849.00 52.2 68.8 90.0 82.6

ConvMed
Baseline 98.20 40.4 61.8 100.0 100.0
PGD 1546.92 42.2 54.8 100.0 97.8
Box 1061.52 45.8 60.0 85.8 64.8

ConvBig
Baseline 1329.48 37.2 61.6 100.0 100.0
PGD 8733.84 41.6 56.2 100.0 100.0
Box 4355.76 51.6 61.4 83.2 75.8

ConvSuper
Baseline 4724.76 39.8 66.2 100.0 100.0
PGD 31140.72 39.6 56.2 100.0 100.0
Box 15314.76 54.2 64.6 83.8 87.6

Skip
Baseline 805.32 39.6 69.4 100.0 100.0
PGD 4916.04 37.0 54.0 100.0 100.0
Box 2789.52 52.6 68.6 90.8 78.0

Table 8. CIFAR10 with ε = 0.03
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Lower Bound % Upper Bound %

Model Train Method Total Train Time (s) Test Error % PGD Box hSwitch

FFNN
Baseline 151.50 22.6 13.8 100.0 93.8
PGD 459.61 19.2 24.0 100.0 88.6
Box 722.46 43.8 10.0 66.2 32.2

ConvMed
Baseline 144.32 15.0 19.8 100.0 54.8
PGD 624.59 14.0 4.4 100.0 40.0
Box 838.21 23.6 9.0 66.2 32.2

ConvBig
Baseline 533.31 11.6 9.6 100.0 98.4
PGD 2745.82 14.0 3.6 100.0 96.4
Box 2065.11 22.2 7.4 57.4 20.8

Skip
Baseline 969.48 13.8 10.4 100.0 96.8
PGD 5844.00 13.6 5.0 100.0 86.8
Box 3352.24 25.0 6.6 53.6 23.0

Table 9. SVHN with ε = 0.01

Lower Bound % Upper Bound %

Model Train Method Total Train Time (s) Test Error % PGD Box hSwitch

FFNN
Baseline 121.08 3.4 99.2 100.0 100.0
PGD 345.24 3.6 13.8 100.0 100.0
Box 568.68 99.1 91.0 100.0 100.0

ConvMed
Baseline 123.36 1.6 61.6 100.0 100.0
PGD 507.84 1.0 5.4 100.0 100.0
Box 668.04 3.4 14.8 28.6 28.2

ConvBig
Baseline 368.40 1.6 48 100.0 100.0
PGD 1819.08 1.2 3.0 100.0 100.0
Box 1429.56 1.8 4.2 11.8 22.0

Skip
Baseline 687.72 1.4 58.6 100.0 100.0
PGD 3791.76 1.2 3.4 100.0 100.0
Box 2310.12 3.2 10.0 20.6 29.4

Table 10. F-MNIST with ε = 0.1


