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ABSTRACT

Symbolic execution is a powerful technique that can generate tests
steering program execution into desired paths. However, the scal-
ability of symbolic execution is often limited by path explosion,
i.e., the number of symbolic states representing the paths under
exploration quickly explodes as execution goes on. Therefore, the
effectiveness of symbolic execution engines hinges on the ability
to select and explore the right symbolic states.

In this work, we propose a novel learning-based strategy, called
Learch, able to effectively select promising states for symbolic
execution to tackle the path explosion problem. Learch directly
estimates the contribution of each state towards the goal of max-
imizing coverage within a time budget, as opposed to relying on
manually crafted heuristics based on simple statistics as a crude
proxy for the objective. Moreover, Learch leverages existing heuris-
tics in training data generation and feature extraction, and can thus
benefit from any new expert-designed heuristics.

We instantiated Learch in KLEE, a widely adopted symbolic ex-
ecution engine. We evaluated Learch on a diverse set of programs,
showing that Learch is practically effective: it covers more code
and detects more security violations than existing manual heuris-
tics, as well as combinations of those heuristics. We also show that
using tests generated by Learch as initial fuzzing seeds enables
the popular fuzzer AFL to find more paths and security violations.
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Figure 1: Our recipe for learning a state selection strategy.

1 INTRODUCTION

Symbolic execution [18, 44] is a promising program analysis tech-
nique widely used in many security-related tasks, such as analyzing
protocol implementations [23, 24, 53], validating hardware design
[76], securing smart contracts [49, 55], and detecting cache timing
leaks [36]. Most prominently, symbolic execution has been exten-
sively used for automatic test generation to exercise program paths
and identify security violations [8, 16, 17, 22, 68], and is by now
an established industrial practice for software testing at Microsoft
[34], IBM [6], NASA [52], and other organizations.

At a high level, symbolic execution works by representing pro-
gram inputs as symbolic variables, exploring program paths sym-
bolically, and collecting path constraints that capture conditions
over the input variables that must hold to steer the program along a
given path. These constraints can be fed into an external constraint
solver to construct a concrete test case. The common goal for sym-
bolic execution tools is to generate a test suite that achieves high
code coverage over the program’s statements within an allocated
time budget [16, 52, 74].

Key challenge: path explosion. While powerful, symbolic exe-
cution is expensive and difficult to scale to large, real-world pro-
grams due to the so-called path explosion problem [18]. That is, at
each program branch, the (symbolic) state for a given path is forked
into two separate states. As a consequence, the number of states
is exponential in the number of branches and quickly explodes as
the execution reaches deep branches. To cope with this challenge,
symbolic execution tools need an effective mechanism to select and
execute promising states that achieve the highest coverage and cost
the least execution time, while avoiding expensive states that do
not improve coverage.

Unfortunately, constructing an ideal state selection is not pos-
sible because at the time of picking a state to explore we do not
know whether it will indeed improve coverage at a reasonable cost.
Ultimately, this decision depends on how the selected state would
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unfold as we continue executing it as well as on state selection
decisions we make in the future. Due to this fundamental limita-
tion, symbolic execution tools rely on manually designed heuristics,
used as a proxy for the ideal selection, that select states based on
properties such as instruction count [16], subpath count [48], con-
straint search depth [52], and hand-crafted fitness [74]. As a result,
even though designed by experts, those heuristics can easily get
stuck in program parts favoring the measured property and fail
to reach other relevant parts that, if covered, would improve code
coverage and may identify critical security violations.

Learch: a learning-based state selection strategy. In this
work, we propose a new data-driven approach, called Learch (short
for Learning-based sEARCH), for learning a state selection strategy
that enables symbolic execution tools to efficiently explore the
input program. The key idea is to leverage a machine learning re-
gression model that, for each state, estimates a reward that directly
captures the core objective of the tool – improving more coverage
while spending less time producing concrete tests. Based on this
model, Learch selects the state with the highest estimated reward,
as opposed to relying on manual heuristics used as a proxy to max-
imize the tool’s objective. Importantly, the construction of Learch
utilizes the knowledge of existing heuristics and can benefit from
any advances in the invention of new heuristics.

Learch is constructed using an iterative learning procedure, as
illustrated at the top of Figure 1. At each iteration, we first run
symbolic execution on a set of training programs. Notably, instead
of exploring states uniformly at random, we leverage different
state selection strategies (e.g., manual heuristics at iteration 1) to
generate a diverse set of tests. Then, for each explored state in the
generated tests, we extract a set of high-level features (including
the properties used by the heuristics) and calculate a reward based
on the overall coverage improvement and time spent exploring the
state. This results in a supervised dataset that captures the behaviors
of the strategies used in the previous step. Finally, we construct a
learned strategy by training a regression model to achieve a small
loss on the supervised dataset so that the model can make accurate
estimations for the reward. The strategy learned at the current
iteration is used to add new supervised data in the next iterations
to create additional learned strategies. At inference time (bottom
of Figure 1), given an unseen program, we run multiple symbolic
execution instances with the learned strategies to generate effective
tests used to exercise the program and report security violations.

Instantiation and evaluation. We instantiated Learch1 on the
most popular symbolic execution engine KLEE [16]. We evaluated
Learch on a diverse set of programs, including 52 coreutils pro-
grams and 10 real-world programs. Our results demonstrate that
Learch is practically effective: it consistently produced more code
coverage (e.g., >20%) and detected more security violations (e.g.,
>10%) than existing manual heuristics [16, 48], as well as the combi-
nations of individual heuristics. Moreover, we used tests generated
by KLEE as initial seeds to run a popular fuzzer, AFL [1, 29]. The
initial seeds from Learch helped AFL to trigger more paths and
security violations than the manual heuristics.

1Learch is publicly available at https://github.com/eth-sri/learch.
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Figure 2: Number of coreutils programs grouped by the aver-

age number of candidate states available at selection steps.

Main contributions. Our main contributions are:
• Learch, a new learning-based state selection strategy for sym-
bolic execution. (Section 3)
• A novel learning framework for constructing multiple learned
strategies. (Section 4)
• A complete instantiation of Learch on the popular symbolic test
generator KLEE. (Section 5)
• An extensive evaluation on a diverse set of programs and various
tasks, demonstrating that Learch is practically effective and
outperforms existing manually designed heuristics. (Section 6)

2 MOTIVATION FOR LEARNING

In this section, we motivate the use of learning for selecting sym-
bolic states by analyzing the results of running KLEE [16] on the
52 coreutils programs used as one of the test set in our evaluation.
The time limit of KLEE was 1h, and the memory budget was 4GB.

Large number of candidate states. When symbolically execut-
ing an input program, KLEE usually forks a large number of states
due to branching behaviors such as if-else statements, resolving
function pointers, and resolving memory allocation sizes. To mea-
sure the number of states produced by KLEE, we ran the tool using
the random path search heuristic (rps) on the 52 coreutils programs
and calculated the average number of candidate states at the se-
lection steps, and show the results in Figure 2. For most programs,
the number of states produced by KLEE is huge: 28 programs have
on average 10k–100k candidate states for selection. For programs
larger than coreutils, the number of candidate states could be even
larger. The enormous search space motivates the need for construct-
ing an effective, fine-grained strategy able to pick promising states
instead of relying on simple and crude heuristics.

Limitations of existing manually designed heuristics. Ex-
isting heuristics are random or manually designed by experts and
typically depend on certain property of the states [16, 48]. They
often get stuck in program parts favoring the property but fail to
explore other parts. We ran KLEE with a set of existing heuristics
and present the average line coverage of the top three heuristics
(rps, nurs:depth, and sgs) in the Venn diagram in Figure 3(a). All
three heuristics achieved ∼540 line coverage. However, no single
heuristic significantly outperformed the others. Importantly, the
heuristics have non-comparable performance and covered different
parts of the program: 499 lines were covered by all heuristics, but
the rest 86 lines were covered by different heuristics. Similarly, the
capability of detecting security violations (UBSan violations [4] in
our work) differs across the heuristics, as shown in Figure 3(b).

https://github.com/eth-sri/learch
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Figure 3: Limitations of existing manually designed heuristics and how Learch outperforms them for our coreutils test set.

Opportunities for learning. Based on the results in Figure 3 (a)
and Figure 3 (b), we can compute the union of covered lines and de-
tected UBSan violations for the three heuristics. The union achieved
585 line coverage and detected 82 UBSan violations, significantly
higher than any individual heuristic. This indicates a promise of
constructing an adaptive strategy that subsumes individual heuris-
tics. In fact, the heuristics provide a precious knowledge base that
facilitates learning such an adaptive strategy. Namely, the heuris-
tics can be used to generate a diverse training dataset, capturing
different selection behaviors, and the properties they rely on can
be used as valuable features for a machine learning model. Another
key advantage of learning is that while the reward calculation is
impossible at inference time, it can be computed for the states ex-
plored at training time, from which we can obtain a direct estimator
for the final coverage-guided objective. The above insights facilitate
and motivate our learning scheme proposed in Figure 1.

To show evidence on the benefits of learning, we constructed an-
other heuristic called portfolio by running the three heuristics, each
for a third of the total time limit, and combined all produced test
cases. We compare Learch with the four heuristics in Figure 3(c)
and Figure 3 (d). In terms of total coverage, Learch outperformed all
four heuristics. Learch was able to cover most code covered by the
heuristics, and exclusively covered more code than the heuristics.
The same holds for the detection of UBSan violations.

Scope and applicability. Our work focuses on purely symbolic
execution (i.e., no concrete execution happens during the test gener-
ation process), even though our idea may give hints for improving
other approaches where it is tricky to select program branches for
test generation, such as concolic testing [33, 57, 58, 62] and hybrid
testing [27, 69, 75].We aim to solve the state selection problem, while
there are many orthogonal approaches for easing path explosion
such as state merging [46] and state pruning [13, 14, 21, 70].

3 SYMBOLIC EXECUTION FRAMEWORK

In this section, we first present a general symbolic execution frame-
work parameterized by a state selection strategy and then introduce
the Learch state selection strategy.

3.1 Symbolic Execution

In Algorithm 1, we show a symbolic execution algorithm called
symExec, a general version of the one in [48]. symExec takes a program
proд (compiled to low-level instructions such as LLVM IR) and a
state selection strategy (strateдy) as input, and generates a set of

test cases (tests). symExec symbolically explores the branches ofproд
(different from [16] which explores one instruction each time) and
stores the progress in a list of symbolic states (states). strateдy is
used to select a state from states for execution at each step. When
the execution of one program path is finished, a test is generated
and added to tests . Next, we describe symExec step by step.

At Line 2, we initialize tests and states to be empty. Then, we
append proд’s initial state which represents the proд’s entry block
to states (Line 3) and calls update to update strateдy (Line 4). update
is an auxiliary function that is called whenever a new state is added
or a pending state is updated. We will discuss update later in this
section. Next, at Line 5, the main loop for symbolic exploration
starts. The loop terminates when states becomes empty, i.e., no
available state can be explored, or the time limit has been reached.
Inside the main loop, we first call selectState, another auxiliary
function described later, for selecting a state (state) from states
where each state represents a branch under exploration. We contin-
uously execute the instructions of state symbolically (Line 8) and
meanwhile check if the current execution violates any of the prede-
fined security properties. The execution stops when we encounter
an EXIT instruction, a security violation, or a FORK instruction
(Line 7). When reaching an EXIT instruction that indicates the
end of a program path or detecting a security violation, we call an
external constraint solver to construct a new concrete test (Line 10)
and remove state from states so that we stop further execution
on state (Line 11). FORK instructions indicate a branching point,
for which we need to copy state to create a forked state f orked
(Line 13). state and f orked then represent the two new branches,
respectively. We append f orked to states , and update both state
and f orked (Line 14 to Line 16). After the main loop finally finishes,
tests is returned.

Objective of symExec. Given an input program, the objective of
running symExec with strateдy is to find a set of concrete tests
achieving the maximal coverage within a fixed amount of time:

argmaxtests=symExec(proд,strateдy)
|
⋃
t ∈tests coverage(t)|

symExecTime
(1)

where coverage(t) measures the coverage of test t (we use line cov-
erage in this work) and symExecTime is the time spent on running
symExec. Achieving Equation 1 is challenging as the number of pend-
ing states is exponential to the number of forks and it is hard to
predict what tests and the coverage of the tests a selected state will
result in. The key is to construct a state selection strategy that can
select the most promising states leading to high-quality tests.



Algorithm 1: Branch-based symbolic execution
1 Procedure symExec(proд, strateдy)

Input :proд, an input program.
strateдy, a state selection strategy.

Output :tests , a set of generated test cases.
2 tests ← emptySet(); states ← emptyList()
3 states .append(proд.initialState)
4 update(proд.initialState, strateдy)
5 while states .size > 0 and !TIMEOUT do

6 state ← selectState(states , strateдy)
7 while state .inst , EXIT and !state .foundViolation and

state .inst , FORK do

8 executeInstruction(state)
9 if state .inst = EXIT or state .foundViolation then

10 tests .add(generateTest(state))
11 states .remove(state)
12 else // state .inst = FORK
13 f orked ← doFork(state)
14 states .append(f orked)
15 update(state , strateдy)
16 update(f orked , strateдy)

17 return tests

3.2 State Selection Strategy

Next, we formally define a state selection strategy.

Definition 1 (State selection strategy). A state selection strategy is a
mapping from symbolic states to real value scores that measure the
importance of the states for exploration. To apply a state selection
strategy in symExec, we need two auxiliary functions described at a
high level below:
• selectState: The inputs of selectState are a list of pending sym-
bolic states states and a state selection strategy strateдy. Each
time invoked (Line 6 of Algorithm 1), selectState leverages the
importance scores returned by strateдy to select a state from
states for the next exploration step. selectState can be determin-
istic or probabilistic, e.g., normalizing the scores into a probability
distribution and drawing a sample from the distribution.
• update: When a new pending state is added (Lines 4 and 16 of
Algorithm 1) or a currently pending state enters a new branch
(Line 15 of Algorithm 1), update is called to update the internal
mechanics of strateдy for computing the importance scores and
also the scores themselves.

The detailed implementation of selectState and update depends
on each specific strategy. Next, we provide the depth-first search
(DFS) strategy in KLEE [16] as an example.

Example 1. The DFS strategy always selects the state representing
the deepest path before exploring other paths.
• strategy: maps each pending state to its depth, i.e., the number
of forks executed for the path that the state explores.
• selectState: selects the state with the largest depth.
• update: updates the depth of the input state.

Algorithm 2: Learch’s update function
1 Procedure update(state , strateдy)

Input :state , the state to update.
strateдy, the Learch strategy.

2 state .feature← extractFeature(state)
3 reward ← strateдy.predict(state .feature)
4 strateдy.setReward(state , reward)

Ideal objective of a state selection strategy. In symExec, a se-
lected state can produce different new states and finally different
tests, depending on the program logic and subsequent selection
decisions. Ideally, at selectState, we would want to consider the
overall effect of each pending state (i.e., the states and tests pro-
duced from the state) and select states leading to tests that not only
achieve higher coverage but also cost less time to obtain, such that
symExec’s objective in Equation 1 is achieved. This criterion can be
summarized in the reward function defined as:

reward(state) =

��⋃t ∈testsFrom(state) coverage(t)
��∑

d ∈statesFrom(state) stateTime(d)
(2)

where testsFrom(state) and statesFrom(state) return the set of tests
and the set of symbolic states originating from state , respectively.
stateTime(d) returns the time spent on state d , including execution
time, constraint solving time, etc. Intuitively, reward measures state
by the total amount of coverage achieved by the tests involving
state divided by the total amount of time symExec spends on state
and the states produced from state . Then, an ideal strategy would
always select the state with the highest reward.

However, it is hard to exactly compute reward at each selectState

step, because the states and the tests produced from state depend
on future selections that are unknown at the current step. That is,
we usually cannot calculate testsFrom(state) and statesFrom(state)
ahead of time before symExec finishes. Due to this limitation, existing
heuristics [16, 48] typically compute importance scores for states
based on a certain manually designed property, as a proxy for reward.
As a result, they often get stuck at certain program parts and cannot
achieve high coverage.

3.3 A Learned State Selection Strategy: Learch

Now we introduce the Learch strategy. The core component of
Learch is a machine learning regression modelφ : Rn → R learned
to estimate the reward in Equation 2 for each pending state. To
achieve this, Learch extracts a vector of n features for the input
state with a function called extractFeature and invokes φ on the
n-dimensional features. The choices of the features and φ are dis-
cussed in Section 5.1.

The selectState function of Learch greedily selects the state
with the highest estimated reward, i.e.:

state = argmaxs ∈states strateдy.getReward(s).

We also considered probabilistic sampling but found that the greedy
one performed better. Learch’s update function is presented in
Algorithm 2. At Line 2, we call extractFeature to extract the features
for the input state. At Line 3, we leverage φ to predict a reward for
the state. Then at Line 4, the learned strategy updates the reward
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(a) An example CFG.

states cov
1 a0, c0, f0, g0 a, c, f, g
2 a0, c0, f0, c1, f1, g1 a, c, f, g
3 a0, b0, d0 a, b, d

(b) Example tests generated by symExec.

a0 c0 f0 g0 c1 f1 g1 b0 d0
1 2 2 2 1 1 2 2 2

(c) Time spent by each state in seconds.
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(d) A tests tree.

state total_cov total_time reward
a0 6 15 0.4
c0 4 10 0.4
f0 4 8 0.5
g0 4 2 2
c1 0 4 0
f1 0 3 0
g1 0 2 0
b0 2 4 0.5
d0 2 2 1

(e) Reward for the states.

Figure 4: An example on assigning a reward to explored states of the tests generated by symExec.

of the state. Note that the expensive feature extraction and reward
prediction are done once per update. In selectState, we only read
the predicted rewards, avoiding unnecessary re-computations.

Benefits of a learned strategy. Different from existing heuris-
tics [16, 48], the Learch strategy makes decisions based on multiple
high-level features (including the ones from the heuristics) and di-
rectly estimates Equation 2 to optimize for Equation 1. Therefore,
Learch can effectively explore the input program and rarely gets
stuck. As a result, Learch achieves higher coverage and detects
more security violations than manually designed heuristics.

4 LEARNING STATE SELECTION STRATEGIES

While a learned strategy can be effective, it is non-obvious how
to learn the desired strategy. This is because a supervised dataset
consisting of explored states and their ground-truth reward for
training the machine learning model φ is not explicitly available.
Next, we introduce techniques for extracting such a supervised
dataset from the tests generated by symExec, from which φ can be
obtained with off-the-shelf learning algorithms.

4.1 Assigning a Reward to Explored States

Given a set of training programs, we run symExec to obtain a set of
tests where each test consists of a list of explored states and covers
certain code. From the tests, we construct a novel representation of
the tests, called tests trees, whose nodes are the explored states, and
leverage the trees to calculate a reward for the explored states. Note
that the calculation of Equation 2 is feasible during training because
symExec has already finished for the training programs. Finally, a
supervised dataset is built for training φ. Next, we describe how to
achieve this step by step.

First, we formally define tests in our context.

Definition 2 (Test). A test generated by symExec for an input pro-
gram is a tuple (states , input , cov). states is a list of symbolic states
[state0, state1, ..., staten ] selected by selectState at Line 6 of Algo-
rithm 1. Each state represents a explored branch and the branch
represented by statei is followed by the branch represented by
statei+1 in the control flow graph of the program. Therefore, states
indicates the program path induced by test . input is a concrete
input for the input program and is constructed by solving the path
constraints of staten with a constraint solver. The concrete exe-
cution of input follows the path indicated by states and achieves
coverage cov .

Example 2. In Figure 4 (a), we show the control flow graph (CFG)
of an example program. The CFG consists of seven basic blocks
and seven edges, and the edges between nodes f and c represent a
loop. We symbolically execute the example program and generate
three tests shown in Figure 4 (b). Test 1 and 2 execute the loop once
and twice, respectively, both covering block a, c, f, and g (i.e., the
results of the coverage function in Equations 1 and 2). Test 3 does not
execute the loop but explores states a0, b0, and d0, covering blocks a,
b, and d. Note that for the examples, we show basic block coverage
for simplicity. In our implementation, we used line coverage. We
record the time spent by symExec on each state (i.e., the results of
the stateTime function in Equation 2) in Figure 4(c).

After generating tests for a training program, we construct a
tests tree defined in the following.

Definition 3 (Tests tree). Given a series of tests [test0, test1, ...,
testm ] for a program, we construct a tests tree whose nodes are
the explored states of the tests (i.e., those in the states field). For
each test i , we go over all pairs of states stateij and state

i
j+1 and set

stateij as the parent of state
i
j+1 in the tree.

Example 3. In Figure 4 (d), we show a tests tree constructed from
the tests in Figure 4(b). Each tree path from the root to a leaf
corresponds to the explored states of a test. For example, the left-
most path a0–c0–f0–g0 consists of the states of test 1. At the left-
hand side of each leaf node, we annotate the number of new blocks
covered by the corresponding test. For instance, test 1 covers four
new blocks: a, c, f, and g. Then, test 2 does not yield new coverage
because the four blocks covered by test 2 were already covered by
test 1 before. Test 3 covers two new blocks: b and d.

The tests tree representation recovers the hierarchy of the ex-
plored states and provides a structure for conveniently calculating
testsFrom(state) and statesFrom(state) by considering the descen-
dants and the paths of each explored state , respectively. As a result,
the reward can be efficiently computed.

Calculate a reward for explored states. To calculate a reward
(Equation 2) for each state , we need to calculate the numerator,
i.e., the total coverage achieved by all tests involving state , and the
denominator, i.e., the total amount of time spent by state and its
descendants. We compute those information with the tests trees in
a bottom-up recursive fashion.

To compute the numerator totalCov for each state , we compute
the coverage achieved by the tests involving state . This is equal



Algorithm 3: Generating a supervised dataset
1 Procedure genData(proдs , strateдies)

Input :proдs , a set of training programs.
strateдies , a set of state selection strategies.

Output :dataset , a supervised dataset.
2 dataset ← emptySet()
3 for strateдy in strateдies do
4 for proд in proдs do
5 tests ← symExec(proд, strateдy)
6 newData← dataFromTests(tests)
7 dataset ← dataset ∪ newData

8 return dataset

to summing up the new coverage (newCov) of all the leaves that are
descendants of state in the tests trees and can be done in a recursive
way as follows:

totalCov(state) =

{
newCov(state) if state is a leaf,∑

c ∈children(state) totalCov(c) otherwise.

To compute the denominator totalTime, we sum up the time spent
on the considered state and its descendants via the following recur-
sive equation:

totalTime(state) = stateTime(state) +
∑

c ∈children(s)
totalTime(c)

Then the reward can be computed by reward(state) = totalCov(state)
totalTime(state) .

Example 4. For each state in Figure 4(d), we compute totalTime,
totalCov, and reward in Figure 4(e).

4.2 Strategy Learning Algorithms

We now present the final algorithms for learning Learch.

Generate a supervised dataset. In Algorithm 3, we present
a procedure named genData for generating a supervised dataset.
The inputs of genData are a set of training programs proдs and a
set of state selection strategies. First, at Line 2, we initialize the
supervised dataset (dataset ) to an empty set. Then, for each strategy
in strateдies and each program in proдs (the loops from Line 3 to
Line 7), we run symExec to generate a set of tests tests (Line 5). Next,
at Line 6, a new supervised dataset is extracted from the tests with
the techniques described in Section 4.1. The new dataset is added
to dataset (Line 7). After the loops finish, dataset is returned.

Iterative learning for producing multiple learned strategies.

While a single learned strategy is already more effective than exist-
ing heuristics [16, 48], we found that using multiple models during
inference time can improve the tests generated by symExec even
more (a form of ensemble learning). This is because the space of
symbolic states is exponentially large and multiple strategies can
explore a more diverse set of states than a single strategy. We pro-
pose an iterative algorithm called iterLearn in Algorithm 4 that
trains multiple strategies. To incorporate the knowledge of existing
heuristics into Learch, we treat them as an input (strateдies) to
iterLearn and leverage them in the data generation process.

Algorithm 4: Iterative learning
1 Procedure iterLearn(proдs , strateдies , N )

Input :proдs , a set of training programs.
strateдies , a set of manual heuristics.
N , the number of training iterations.

Output :learned , a set of learned strategies.
2 dataset ← emptySet(); learned ← emptySet()
3 for i ← 1 to N do

4 newData← genData(proдs , strateдies)
5 dataset ← dataset ∪ newData

6 newStrateдy← trainStrategy(dataset )
7 learned .add(newStrateдy)
8 strateдies ← {newStrateдy}

9 return learned

iterLearn first initializes a supervised dataset dataset and a set
of learned strategies learned to empty sets (Line 2). Then it starts
a loop from Line 3 to Line 8 with N iterations. For each iteration,
genData (Algorithm 3) is called to generate new supervised data
using strateдies (Line 4) and the new data is added to dataset
(Line 5). Then, a new strategy newStrateдy is trained at Line 6. To
achieve this, we run an off-the-shelf learning algorithm on dataset ,
represented by the trainStrategy function. Then, newStrateдy is
added to learned (Line 7). At Line 8, we assign newStrateдy as
the only element in strateдies . This indicates that genData is called
with the manual heuristics only at the first loop iteration. After the
first loop iteration, the learned strategy obtained from the previous
iteration is used to generate new supervised data. After the loop
finishes, we return the N learned strategies.

Note that our learning pipeline is general and can be extended to
optimizing for other objectives (e.g.., detecting heap errors) just by
choosing an appropriate reward function (e.g., the number of heap
access visited during execution) and designing indicative features.
Moreover, Learch employs an offline learning scheme, i.e., training
is done beforehand and the learned strategies are not modified at
inference time. One natural future work item is to extend Learch
with online learning where we utilize already explored states of the
input program to improve the strategies at inference time. Online
learning can help Learch generalize better to programs that are
drastically different from the training programs.

5 INSTANTIATING LEARCH ON KLEE

In this section, we describe how to instantiate Learch in KLEE
[16]. For more implementation details, please refer to Learch’s
open source repository at https://github.com/eth-sri/learch. While
Learch is general and can be applied to other symbolic execution
frameworks, we chose KLEE because it is widely adopted in many
applications, including hybrid fuzzing [27] and others [23, 24, 36, 53,
76]. We believe the benefits of Learch can be quickly transferred to
the downstream applications and other systems [8, 22, 52, 68, 74].

5.1 Features and Model

We describe the features and themachine learningmodel of Learch.

https://github.com/eth-sri/learch


Table 1: Features for representing a symbolic state state.

Feature Description

stack Size of state ’s current call stack.
successor Number of successors of state ’s current basic block.
testCase Number of test cases generated so far.
coverage (1) Number of new instructions covered by state ’s branch.

(2) Number of new instructions covered along state ’s path.
(3) Number of new source lines covered by state ’s branch.
(4) Number of new source lines covered along state ’s path.

constraint Bag-of-word representation of state ’s path constraints.
depth Number of forks already performed along state ’s path.
cpicnt Number of instructions visited in state ’s current function.
icnt Number of times for which state ’s current instruction has

been visited.
covNew Number of instructions executed by state since the last

time a new instruction is covered.
subpath Number of times for which state ’s subpaths [48] have been

visited. The length of the subpaths can be 1, 2, 4, or 8.

Features. In Table 1, we list the features extracted for a symbolic
state (state) by extractFeature at Line 2 of Algorithm 2. Feature
stack calculates the size of state’s current call stack. The larger the
call stack size, the deeper the execution goes into. Feature successor

calculates the number of successors that state’s current basic block
has. The more successors, the more paths the state can lead to. The
next two features capture the execution progress. Feature testCase

returns the number of already generated test cases. The coverage

feature tracks the new instruction and line coverage achieved by
state’s latest branch and the program path already explored by
state , respectively. The states with more new coverage should be
explored first. Feature constraint is a 32-dimensional vector contain-
ing the bag-of-word representation of the path constraints of state .
To extract the bag-of-word representation, we go over each path
constraint that is represented by an expression tree and traverse
the tree to obtain the count of each node type.

The last five statistics are borrowed from existing expert-designed
heuristics [16, 48]. By including them as features of Learch, we
enable Learch to learn the advantages of those heuristics. Feature
depth calculates the number of forks that happened along state’s
path. Feature cpicnt records the number of instructions executed
inside state’s current function. Feature icnt is the number of times
for which the current instruction of state is executed. Feature covNew
records the last newly covered instruction for state and calculates
its distance to the current instruction. For feature subpath, we track
the subpaths of state (i.e., the last branches visited by state’s path
[48]) and return the number of times for which the subpaths have
been explored before. The fixed length of the subpaths is a hyper-
parameter and we used 1, 2, 4, and 8, as done in [48].

Model selection. Learch requires amachine learningmodel that
transforms the features described above to an estimated reward
(Line 3 of Algorithm 2). Any regression model can be adopted in
our setting. We leverage the feedforward neural network model
as it yielded good results in practice. We also tried simpler linear
regression and more complicated recurrent neural networks, but

found that feedforward networks achieved the best results. More
results on model selection are discussed in Section 6.6.

Leverage multiple learned strategies. As described in Sec-
tion 4.2, we apply ensemble learning to train N models and con-
struct N strategies. To apply the N strategies during inference time,
we simply divide the total time budget into N equal slots, run KLEE
with each learned strategy independently on one slot, and union
the tests from all the runs. This results in tests that achieve higher
coverage and detect more security violations than using a single
strategy for the full time budget. This is because different learned
strategies can explore an even more diverse set of program parts.
Moreover, KLEE usually generates tests quickly in the beginning
and saturates later. One time slot is usually already enough for a
learned strategy to generate a reasonably good set of tests.

5.2 Security Violations

An important aspect of symbolic execution tools is to detect vio-
lations of program properties that can lead to security issues. The
original KLEE detects certain types of errors. However, we found
that it usually only reports failures of the symbolic execution model
such as errors of the symbolic memory model, reference of external
objects, and unhandled instructions. Those errors are usually not
triggered concretely and do not lead to security violations.

In this work, we leverage Clang’s Undefined Behavior Sanitizer
(UBSan) [4] to instrument the input program and label five kinds
of security violations, listed below:

• Integer overflow: checks if the arithmetic operations overflow. The
operations include addition, subtraction, multiplication, division,
modulo, and negation of signed and unsigned integers.
• Oversized shift: checks if the amount shifted is equal to or greater
than the bit-width of the variable shifted, or is less than zero.
• Out-of-bounds array reads/writes: checks if the indices of array
reads and writes are equal to or greater than the array size.
• Pointer overflow: checks if pointer arithmetic overflows.
• Null dereference: detects the use of null pointers or creation of
null dereferences.

When any UBSan violation happens, a specific function is called.
We added handlers for capturing those functions and generating
a concrete test case triggering the violations, except for integer
overflows which has already been supported by KLEE. As a result,
KLEE is able to generate reproducible concrete tests for the above
violations. We note that KLEE is not restricted to UBSan violations
but the difficulty of supporting more violations depends on the
implementation of the handlers. For example, it would take a sig-
nificant amount of effort to support the AddressSanitizer [63] in
KLEE so we consider it as a future work item.

6 EXPERIMENTAL EVALUATION

We present an extensive evaluation of Learch aiming to answer
the following questions:

• Can Learch cover more code than existing manual heuristics?
• Can Learch discover more security violations?
• Can Learch generate better initial seeds for fuzzing?
• What is the impact of Learch’s design choices?



Table 2: The statistics of the programs used as test sets. MainLOC represents the main program lines without neither internal

nor external library code, i.e., the lines of the source file containing the main function. ELOC represents the total executable

lines in the final executable after KLEE’s optimizations, including internal libraries within the package but excluding external

library code that KLEE automatically links. The numbers for coreutils were averaged from all 52 test programs.

Program Version Input format Binary size MainLOC ELOC KLEE settings for symbolic inputs

coreutils 8.31 various 142 KB 330 1208 -sym-args 0 1 10 -sym-args 0 2 2 -sym-files 1 8 -sym-stdin 8

diff 3.7 cmd + text 548 KB 552 7, 739 -sym-args 0 2 2 A B -sym-files 2 50

find 4.7.0 cmd + text 802 KB 256 11, 472 -sym-args 0 3 10 -sym-files 1 40 -sym-stdin 40

grep 3.6 cmd + text 587 KB 1, 167 9, 545 -sym-args 0 2 2 -sym-arg 10 A -sym-files 1 50

gawk 5.1.0 awk + text 1.3 MB 604 24, 079 -f A B -sym-files 2 50

patch 2.7.6 cmd + text + diff 466 KB 984 7, 007 -sym-args 0 2 2 A B -sym-files 2 50

objcopy 2.36 cmd + elf 4.9 MB 2, 513 48, 895 -sym-args 0 2 2 A -sym-files 1 100

readelf 2.36 elf 2.4 MB 10, 381 28, 522 -a A -sym-files 1 100

make 4.3 Makefile 466 KB 883 7, 862 -n -f A -sym-files 1 40

cjson 1.7.14 json 83 KB 71 610 A -sym-files 1 100 yes

sqlite 3.33.0 sql commands 2.1 MB 35, 691 46, 388 -sym-stdin 20

6.1 Evaluation Setup

Now we describe the setup for our experimental evaluation.

Benchmarks. We evaluated Learch on coreutils (version 8.31)
and 10 real-world programs (listed in Table 2). coreutils is a stan-
dard benchmark for evaluating symbolic execution techniques
[16, 22, 48, 50]. We excluded 3 coreutils utilities (kill, ptx, and yes)
that caused non-deterministic behaviors in our initial experiments.
As a result, we used 103 coreutils programs in our evaluation. The
10 real-world programs are much larger than most coreutils pro-
grams, deal with various input formats, and are widely used in
fuzzing and symbolic execution literature [7, 12, 15, 21, 43, 72].

We randomly selected 51 of the 103 coreutils programs for train-
ing Learch. The rest 52 coreutils programs and the 10 real-world
programs were used as test sets for evaluating Learch’s perfor-
mance on unseen programs. The statistics of both test sets can
be found in Table 2. The coreutils test set has overlapping code
with the training set as they are from the same package [5]. This
represents a common and valid use case where developers train
Learch on programs from their code base and then run it to test
other programs from the same code base. Note that our use case
is different from other security tasks based on machine learning
such as binary function recognition [5, 10, 67] where sharing of
code between train-test splits must be avoided as training on target
binaries is impossible due to unavailable source code. The 10 real-
world programs are from packages different from coreutils and
thus share less code with coreutils. They are used to demonstrate
that Learch generalizes well across different code bases. That is,
once trained (e.g., with coreutils in our evaluation), Learch can
directly be used to test other software packages.

Baselines. We adopted existing manually crafted heuristics cre-
ated for KLEE as baselines [16, 48]. We do not compare with [74]
because it is not part of KLEE and we did not find its implemen-
tation available. We ran all KLEE’s individual heuristics on our
coreutils test set and only present the top four due to space limit:

• rss (random state search): each time selects a state uniformly at
random from the list of pending states.

• rps (random path search): constructs a binary execution tree
where the leaves are the pending states and the internal nodes
are explored states that produce the pending states. To select a
state, rps traverses the tree in a top-down fashion, picks a child
of internal nodes randomly until reaching a leaf, and returns the
reached leaf as the selection result. The leaves closer to the root
are more likely to be selected.
• nurs:cpicnt and nurs:depth: both are instances of the nurs (non-
uniform random search) family. They sample a state from a distri-
bution where the probability of each state is heuristically defined
by cpicnt and depth, respectively. See Table 1 and Section 5.1 for
the definitions of cpicnt and depth.

We also compare Learch with combinations of multiple heuristics:
• sgs (subpath-guided search) [48]: selects a state whose subpath

(defined in Table 1 and Section 5.1) was explored least often. To
achieve the best results, the authors of [48] ran four independent
instances of sgs where subpath lengths were configured to 1, 2,
4, and 8, respectively. Each instance spent a quarter of the total
time limit, and then the resulted test cases were combined. We
followed this in our evaluation.
• portfolio: a portfolio of four different heuristics: rps, nurs:cpicnt,

nurs:depth, and sgs. Like sgs and Learch, we ran each heuristic
of portfolio as an independent instance that spends a quarter of
the total time budget.

Different from Algorithm 1 which selects a state per branch, the
original KLEE performs state selection per instruction. In our initial
experiments on coreutils, we found that running the heuristics
with Algorithm 1 gave better results and thus used Algorithm 1 for
all heuristics in our evaluation. This means that our baselines are
already stronger than their counterparts in the original KLEE.

KLEE settings. KLEE provides users with options to specify the
number and length of symbolic inputs (e.g., command-line argu-
ments, files, stdin, and stdout) to an input program. The symbolic
options we used are listed in Table 2. We followed prior works
[16, 48] to set symbolic inputs for coreutils programs. For the 10
real-world programs, we configured the symbolic options based on
their input formats and prior works [15, 43].
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Figure 5: Line coverage of running KLEE with different strategies for 1h on the 52 coreutils testing programs. The numbers

were averaged over 20 runs and the error bars represent standard deviations.
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Figure 6: Line coverage for the 10 real-world programs by running KLEE with different strategies for 8h. Mean values and

standard deviations over 20 runs are plotted.

When evaluating the coreutils test set, we set the time limit to
1h for each search strategy, following [16, 48]. For the real-world
programs, the time limit was 8h. The memory limit for all programs
was 4GB, which is higher than KLEE’s default budget (2GB) and the
limit used by prior works [15, 21]. We did not input any initial seed
test to KLEE. Whenever necessary, we repeated our experiments
for 20 times and report the mean and standard deviation.

Training and testing Learch. We trained Learch by running
Algorithm 4 on the 51 coreutils training programs. The set of initial
strategies consisted of rps, nurs:cpicnt, nurs:depth, and sgs (with
subpath lengths 1, 2, and 4) as these strategies performed the best
on the training programs. We ran Algorithm 4 for 4 iterations to
train 4 strategies (feedforward networks with 3 linear layers, 64
hidden dimension, and ReLU activations). We did not include more
trained strategies because more strategies did not significantly
increase Learch’s performance. Each iteration spent around 4h (2h
on symExec, 1h on dataFromTests, and 1h on trainStrategy). When

running Learch on the test set, we ran each strategy for a quarter
of the total time limit and combined the resulted test cases.

Versions and platform. We implemented Learch on KLEE 2.1
and LLVM 6.0. We used pytorch 1.4.0 for learning. All symbolic
execution experiments were performed on a machine with 4 Intel
Xeon E5-2690 v4 CPUs (2.60 GHz) and 512 GB RAM. Each KLEE in-
stance was restricted to running on one core. The machine learning
models were trained on a machine with RTX 2080 Ti GPUs.

6.2 Code Coverage

In this section, we present our evaluation on code coverage, i.e.,
line coverage measured with gcov [2]. We first report absolute line
coverage for all files in the package. Then, we present and discuss
the percentage of covered lines.

Line coverage for coreutilsprograms. In Figure 5 (a), we present
the coverage of each strategy on the 52 coreutils testing programs.
On average, Learch (green bar) covered 618 lines for all files in the



Table 3: Percentage of covered MainLOCs.

rss rps nurs:cpicnt nurs:depth sgs portfolio Learch

coreutils 66.4 73.1 71.6 71.4 72.0 75.4 76.9
diff 30.3 53.7 31.1 30.6 32.3 50.5 59.1
find 52.1 57.7 58.3 56.0 60.2 61.2 61.0
grep 21.8 29.7 17.1 28.1 29.8 29.7 36.5
gawk 39.2 39.2 39.2 43.0 39.2 43.0 39.2
patch 13.8 19.1 24.4 15.1 33.5 31.9 35.8
objcopy 9.9 9.5 6.0 9.3 8.3 9.8 13.3
readelf 4.8 3.9 5.2 6.5 7.7 9.1 9.0
make 33.3 33.3 33.0 45.2 33.3 45.2 45.2
cjson 79.8 80.2 76.5 79.6 79.7 80.3 80.3
sqlite 8.1 6.3 12.8 11.4 9.2 8.7 14.2

Table 4: Percentage of covered ELOCs.

rss rps nurs:cpicnt nurs:depth sgs portfolio Learch

coreutils 13.6 15.2 14.7 14.9 14.9 15.7 16.1
diff 1.9 3.3 2.0 2.0 2.0 3.1 3.6
find 1.0 1.1 1.2 1.1 1.2 1.2 1.2
grep 2.3 2.5 1.8 2.9 3.1 3.1 3.9
gawk 0.9 0.9 0.9 1.0 0.9 1.0 0.9
patch 1.7 2.4 3.1 1.9 4.2 4.0 4.5
objcopy 0.5 0.4 0.3 0.4 0.4 0.5 0.6
readelf 1.5 1.2 1.6 2.0 2.5 2.9 2.9
make 3.2 3.2 3.2 4.4 3.2 4.4 4.4
cjson 7.3 7.4 7.0 7.3 7.3 7.4 7.4
sqlite 5.5 4.2 8.8 7.8 6.3 5.9 9.7

package. The best individual heuristic was rps (purple bar), which
covered 546 lines. That is, Learch achieved at least 13% more cov-
erage than any individual heuristic. portfolio (purple bar) was the
best combined heuristic but still covered 44 lines less than Learch.

In Figure 5 (b), we plot the number of programs where each strat-
egy achieved the best coverage among all the strategies. For ties,
we count one for each strategy. For 29 programs, Learch was the
best strategy, outperforming portfolio by 3 and other heuristics
by a large margin. For the other 23 programs, at least one heuris-
tics performed better than Learch, but usually only by a small
margin. Moreover, we found that Learch gave more benefits on
larger coreutils programs. For example, for the largest 5 programs,
Learch achieved ∼30% more coverage than portfolio, compared to
∼8% overall for all 52 programs. For smaller programs, the manual
heuristics already covered most parts of the programs so Learch
hardly improved upon them.

Line coverage for real-world programs. In Figure 6, we plot
the coverage of each strategy on the 10 real-world programs. To
generate the coverage curve for combinations of strategies, we treat
independent runs of each strategy sequentially. On average, Learch
covered 2, 433 lines while the best manual heuristic, portfolio, cov-
ered 2, 023 lines. Overall, Learch outperformed all the manual
heuristics by >20%.

Judging from the mean values, Learch was the best strategy for
8 of the 10 real-world programs, except for cjson and find. For cjson,
Learch was the second best, covering 10 lines less than portfolio.
For find, Learch covered 242 and 191 less lines than portfolio and
rps, respectively. Learch’s superior performance in code coverage
was consistent among the 10 programs while all manual heuristics
were unstable. For example, portfolio did well on cjson and find

but not on objcopy and sqlite. Similarly, sgs performed well on gawk

but poorly on diff.
For sqlite, the standard deviations of all strategies were high.

The reason is that, during some runs, the strategies were unable to
generate a few important test cases, resulting in thousand of lines
less coverage than other runs. This happened the least often for
Learch so Learch’s mean coverage was the highest.

Percentage of covered lines. Apart from absolute line cover-
age, we calculated the percentage of covered lines to investigate
how thoroughly the test programs are covered by KLEE and the
strategies. We measured the percentage of covered MainLOCs and

ELOCs (mean value from 20 runs). The total number of MainLOCs
and ELOCs for each test program can be found in Table 2.

MainLOC was used for measuring coverage in [16, 48] and refers
to the main program lines, i.e., the lines of the source file containing
the main function. It does not include internal and external library
code that can be invoked by multiple programs to avoid counting
them multiple times (see [16] for details on the advantages of using
MainLOC). The results for MainLOC percentages are presented
in Table 3. Learch achieved the highest coverage for most cases.
We can observe that the percentages for all strategies decrease
with increasing program size: for small programs such as coreutils,
cjson and find, all strategies achieved relatively high coverage (e.g.,
>60%); while for large programs such as readelf and sqlite, KLEE
only covered ∼10% MainLOCs.

ELOC, short for executable lines of code, represents the total
executable lines in the final executable after KLEE’s optimizations.
In [16, 48], it was used for measuring program size and included
external library code that KLEE automatically links. In our work,
we use ELOC for measuring coverage and thus excluded external
library code that does not belong to the program package. The
internal library code from the package was included. The results on
the percentage of covered ELOCs are presented in Table 4. Learch
still covered most portions of code for most cases. However, even
with the best strategy, KLEE covered only a very small portion of
code (e.g., <10% for the real-world programs).

Our results on percentage of covered lines show that it is still
challenging to scale symbolic executor like KLEE to large programs.
While Learch improves on other search strategies, efforts on other
directions are also needed, such as reducing memory consumption
[15, 21], accelerating constraint solving [9, 28, 32, 61], and executing
program fragments instead of the whole program [59, 70].

Summary on generalizability. Learch’s effectiveness in code
coverage demonstrates its generalizability: it generalizes between
programs from the same package (i.e., training and testing on
coreutils). This is because these programs usually share the same
code and our learning method can capture this. More interestingly,
Learch also generalizes from a package of smaller programs (i.e.,
training on coreutils) to other packages whose code is different
from the training package and programs are much larger (i.e., test-
ing on the real-world programs). This is likely because Learch’s
features capture the importance of symbolic states even for pro-
grams different from the training set.
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Figure 7: The total number of detected UBSan violations found by KLEE with different strategies.
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Figure 8: The number of paths and UBSan violations discovered by AFL after 8h using KLEE tests as initial seeds. The numbers

were averaged over 20 runs and the error bars represent standard deviations.

6.3 Detecting Security Violations

We ran the strategies on program instrumented with UBSan check-
ers to evaluate their capability of detecting UBSan violations. All the
detected violations are true positives because they can be triggered
by the generated test cases.

In Figure 7, we present the number of UBSan violations detected
by the strategies. For the coreutils test set (Figure 7(a)), Learch
detects 88 violations in total, outperforming the manual heuristics
by >12%. For the 10 real-world programs (Figure 7(b)), Learch
outperformed all manual heuristics except for sgs which found
the same number of violations as Learch, even though Learch
achieved higher coverage than sgs. This is likely because the parts
of the programs explored by sgs contained more UBSan labels. We
provide a manual analysis of the UBSan violations detected with
Learch in Section 6.5.

6.4 Seeding for Fuzzing

Fuzzing has gained substantial interest recently [1, 27, 30, 31, 45, 72].
It is shown that fuzzing performance heavily depends on the choices
of initial seeds [39, 45]. While the initial seeds used in prior works

are usually empty, randomly generated, or manually constructed
[12, 26, 45, 71], symbolic execution can be used to automatically
generate fuzzing seeds (see [29] for how initial seeds generated
by KLEE compare to simple and expert seeds). In this work, we
investigate if Learch can generate better fuzzing seeds than the
manual heuristics.

We selected AFL (version 2.52b) [1] due to its popularity and ran
it on the four largest programs in our real-world benchmarks whose
input format supports AFL-style fuzzing: objcopy, readelf, make, and
sqlite. For each program and each strategy, we constructed the
initial seed set by selecting the top three tests from our previous
experiment (i.e., Figure 6) based on the best coverage and ran AFL
starting from the initial seeds for 8h. We selected only three initial
seeds because using a small set of initial seeds is recommended by
AFL and adopted by many fuzzing works [3, 7, 27, 45, 51]. Aware
of the randomness in AFL, we repeated each run for 20 times and
report the mean and standard deviation.

Discovering paths. AFL generates a test when a new path is
triggered. Therefore, one of the most direct indicator of AFL’s
progress is path coverage, i.e., the number of discovered paths



1 static bool consider_arm_swap (struct predicate *p) {

2 ...

3 pr = &p->pred_right;

4 // findutils -4.7.0/ find/tree.c: line 538

5 pl = &p->pred_left ->pred_right;

6 ...

Figure 9: A null pointer dereference.

1 const char * _bfd_coff_read_string_table (bfd *abfd) {

2 ...

3 // binutils -2.36/ bfd/coffgen.c: line 1676

4 pos += obj_raw_syment_count (abfd)

5 * bfd_coff_symesz (abfd);

6 ...

Figure 10: Overflows leading to an incorrect file position.

1 static char * find_map_unquote (...) {

2 ...

3 // make -4.3/ src/read.c: line 2354

4 memmove (&p[i], &p[i/2],

5 (string_len - (p - string )) - (i/2) + 1);

6 ...

7 }

Figure 11: An overflow leading to wrong array accesses.

1 # define ISDIGIT(c) (( unsigned int) (c) - '0' <= 9)

2 ...

3 // coreutils -8.31/ lib/strnumcmp -in.h: line 224

4 for (log_a = 0; ISDIGIT (tmpa); ++log_a)

5 do { tmpa = *++a; }

6 while (tmpa == thousands_sep );

7 ...

Figure 12: A benign overflow.

[30, 31, 42]. In Figure 8(a) to Figure 8(d), we show the number
of paths discovered by AFL for the four programs, respectively.
When using the initial seeds from Learch, AFL discovered the
most number of paths for all four programs. With the initial seeds
from rss and rps, AFL discovered very few paths for readelf, which
is not surprising as rss and rps achieved very low coverage on
readelf with KLEE.

Detecting security violations. We re-ran the tests generated
by AFL with UBSan checkers turned on. The number of detected
violations is shown in Figure 8(e) to Figure 8(h). Overall, with
initial seeds from Learch, AFL found 128 violations in total, out-
performing other heuristics (10 more than the best heuristic, sgs).
We provide a manual analysis of the detected violations next.

6.5 Manual Analysis of Security Violations

Unlike standard crash bugs, UBSan violations may not crash the
program but can indicate deeper, functional misbehaviors. More-
over, some UBSan violations may be benign. In this section, we
performed a manual inspection of the violations found with Learch
to understand the severity of the violations.

The vast majority of detected violations were overflows. We
manually inspected 112 violations detected by running KLEE with
Learch, as well as 152 violations discovered by AFL with initial
seeds from Learch. From these violations, we identified 46 potential
bugs (see column "Bug reports" in Table 5). These potential bugs
can result in logical errors (e.g., setting a wrong value, moving a file
cursor to awrong position, wrong control flow, etc.) or out-of-bound
reads/writes. The remaining violations were benign cases, mainly
categorized as: (1) the programs already consider the violation and
have specialized handlers; (2) the operations are used for hashing or
generating random numbers so the overflows do not affect program
logic; (3) the related variables are set to a new value or not used
after the violations.

We reported the 46 potential bugs to the developers and 13
of them were confirmed as true bugs. The other potential bugs
were recognized as false positives by the developers. Among the
confirmed bugs, 11 bugs have been fixed or will be fixed, or the
developers are discussing how to fix them. The number of confirmed
and fixed bugs for each program is listed in Table 5.

Table 5: Our bug reports to the developers. The programs

without any manually identified bugs are not listed.

Violations Bug reports Confirmed Fixed/Will fix

coreutils 88 3 2 2
find 5 2 2 2
objcopy 73 29 3 3
readelf 57 5 1 1
make 26 3 3 3
sqlite 9 4 2 0

Total 258 46 13 11

Examples. We show four examples of UBSan violations detected
with Learch. The first three are confirmed bugs and the last one
is a benign case. In Figure 9, &p->pred_left is null pointer but the
code tries to deference it. This bug was detected by running KLEE
with Learch on find. In Figure 10, the addition at Line 4 and the
multiplication at Line 5 can overflow, affecting the value of pos and
leading to a wrong file position when reading a binary executable
file with objcopy. Figure 11 is taken from make and contains a subtract
overflow at Line 5 which results in wrong or even out-of-bound
array accesses. AFL detected Figures 10 and 11 using the initial
seeds from Learch. Figure 12 shows a benign subtraction overflow
detected by KLEE with Learch for the coreutils tool sort. The code
computes the logarithm of a number stored in the unsigned char

array tmpa. To decide if the current array element is a digit, the code
uses the macro ISDIGIT which overflows when c < ’0’. When this
happens, ISDIGIT returns false, which is desired as c is not a digit.
Therefore, the overflow case was already considered and handled.

6.6 Effectiveness of Design Choices

We investigate the usefulness of Learch’s design choices. Due to
space limit, we mainly present the results on coreutils. For the real-
world programs, we observed the same phenomenon as coreutils.

Performance of individual strategies. As described in Sec-
tion 6.1, Learch consists of four learned strategies. We ran each
strategy for 1h on the coreutils test set and compare the results
with Learch (a union of the four strategies each running for 15m) in
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Figure 13. The individual strategies already achieved more coverage
(∼20 lines) than the individual manual heuristics. Even though the
absolute coverage numbers were similar, the four strategies covered
different parts of the program. As a result, Learch, combined from
the four strategies, was the most performant overall. This is the
desired outcome of the iterative learning in Algorithm 4.

Learch also found more UBSan violations than strat-1, strat-2,
and strat-3, as a result of the combination. Learch found 5 fewer
violations than strat-4 because strat-4 found many violations after
15m. Therefore, to make Learch detect more violations, we can
simply increase the time budget.

Different choices of machine learning model. Other than
feedforward networks used in Learch, we considered simpler lin-
ear regression (linear) and more complicated recurrent neural net-
works (rnn). For rnn, we added a hidden state of dimension 64 be-
tween a state and its parent. We trained linear and rnn on the same
supervised dataset as Learch, and ran them with the same configu-
ration (i.e., four independent runs each taking a quarter of the time
budget) as Learch on our test set. The results on the coreutils test
set are shown in Figure 14, showing that Learch outperformed
linear and rnn. The reason is likely that the complexity of feedfor-
ward networks is well-suited for our learning task.

7 RELATEDWORK

We discuss works closely related to ours.

Symbolic execution. Symbolic execution based testing tech-
niques have been developed for decades [18, 44], yielding a number
of applications [23, 24, 27, 36, 53, 76] and systems [8, 16, 17, 22,
52, 68, 74]. The main challenges in symbolic execution include
path explosion and expensive constraint solving [18]. A number
of manual heuristics have been proposed for selecting promising
paths [16, 48]. Our learning-based strategy Learch significantly
outperforms those heuristics. Other orthogonal attempts for eas-
ing the path explosion problem include state merging [46], state
pruning [13, 14, 21, 70], and code transformation [25]. A number
of works focus on improving the performance of constraint solvers
[9, 28, 32, 61]. Some works combine the constraint solving process
with the symbolic execution framework by solving multiple path
constraints once [77], leveraging pending path constraints [43],
and introducing neural constraints [66]. While most of the above
approaches aim to explore the whole program (same as our goal),
directed symbolic execution aims to reach certain program parts or
changes [50, 56, 73].

Concolic testing and fuzzing. Concolic testing and fuzzing are
different approaches for program testing but can benefit from ad-
vances in symbolic execution because many of them use symbolic
execution for triggering complex paths. Concolic testing [33, 57, 58,
62] concretely executes the program alongside symbolic execution
and negates the path constraint of visited branches to produce new
tests covering unvisited branches. Heuristics have been learned for
selecting branches in concolic testing [19, 20]. Fuzzing is a tech-
nique that concretely executes the program and generates concrete
inputs based on input specifications [11, 40, 47] or mutations from
existing inputs [1, 7, 12, 26, 30, 31, 41, 42, 45, 65, 72]. Symbolic exe-
cution has been used for improving fuzzing [29, 54]. Hybrid testing
[27, 69, 75] combines concolic testing and fuzzing in an alternative
manner to benefit from the advantages of both.

Machine learning for program analysis and security. Ma-
chine learning has been extensively used for security tasks. Markov
chain [12], feedforward networks [65], recurrent networks [35],
imitation learning [37], reinforcement learning [72] have been used
for improving test generation in fuzzing. The authors of [73] lever-
age reinforcement learning for directed symbolic execution. Many
other tasks such as binary analysis [38], malware analysis [60], and
taint analysis [64] have been solved by data-driven approaches.

8 CONCLUSION

In this work, we introduced Learch, a learning-based state selec-
tion strategy for symbolic execution. Learch works by estimating
a reward for each state and selecting the state with the highest
reward to maximize coverage while minimizing time cost. We con-
struct Learch by applying off-the-shelf regression learning on a
supervised dataset extracted from the tests generated by running
symbolic execution on a set of training programs. The training
process is iterative and constructs multiple strategies which pro-
duce more diverse tests than a single strategy. Learch benefits
from existing heuristics by incorporating them in both training and
feature extraction.

We instantiated Learch on KLEE [16] and evaluated it on the
coreutils programs and ten real-world programs. The results demon-
strated that Learch is effective and can produce higher-quality tests
than existing manually designed heuristics, either individual ones
or combined as portfolios: Learch’s tests yielded more code cover-
age, detected more security violations, and were better candidates
as initial seeds for fuzzers like AFL.
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