
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Learning commutativity specifications

Timon Gehr Dimitar Dimitrov Martin Vechev

Department of Computer Science
ETH Zürich

Abstract. In this work we present a new sampling-based “black box”
inference approach for learning the behaviors of a library component.
As an application, we focus on the problem of automatically learning
commutativity specifications of data structures. This is a very challenging
problem, yet important, as commutativity specifications are fundamental
to program analysis, concurrency control and even lower bounds.
Our approach is enabled by three core insights: (i) type-aware sampling
which drastically improves the quality of obtained examples, (ii) relevant
predicate discovery critical for reducing the formula search space, and
(iii) an efficient search based on weighted-set cover for finding formulas
ranging over the predicates and capturing the examples.
More generally, our work learns formulas belonging to fragments consist-
ing of quantifier-free formulas over a finite number of relation symbols.
Such fragments are expressive enough to capture useful specifications
(e.g., commutativity) yet are amenable to automated inference.
We implemented a tool based on our approach and have shown that it
can quickly learn non-trivial and important commutativity specifications
of fundamental data types such as hash maps, sets, array lists, union find
and others. We also showed experimentally that learning these specifica-
tions is beyond the capabilities of existing techniques.

1 Introduction

In this work we present a new and scalable “black box” technique for learning
complex library specifications. Our technique is based on sampling of library be-
haviors, is fully automatic, and quickly learns succinct and precise specifications
of complex interactions beyond the reach of current techniques. Concretely, our
approach learns specifications in fragments of the quantifier-free formulas over a
finite number of relation symbols. Such fragments are expressive enough to cap-
ture useful specifications yet are amenable to automated inference. Note that
even though the fragment is quantifier-free, the relations in the fragment can be
defined using quantifiers and hence the learned formulas may include quantifiers.

We have instantiated our approach to learning commutativity specifications of
data structures, a hard yet practically important problem as these specifications
are fundamental to concurrency (e.g., program analysis [4], concurrency control
[23,14,9,13], and lower bounds [1]). This is the first automatic approach that can
precisely and quickly infer commutativity specifications for useful data types
such as hash map, union find, array list and others1.

1 Specifications and source code available at http://www.srl.inf.ethz.ch/core

http://www.srl.inf.ethz.ch/core

Fig. 1. Our approach to specification inference.

The flow and ingredients of our approach are shown in Fig. 1. Given a library
component (e.g., a data structure), instead of blindly sampling its behaviors and
obtaining redundant examples, a key insight is to introduce the notion of type-
aware sampling which allows us to obtain a diverse set of quality examples
(informally, two examples have the same type if they are indistinguishable by
a formula in the logical fragment). However, even with advanced sampling, the
sheer number of examples can overwhelm the search. That is why we reduce the
size of this set by filtering out examples indistinguishable by the logical fragment.
Once the final set of examples is obtained, a critical step is to reduce the search
space of candidate formulas by discovering relevant predicates (a fundamental
step in many static analysis approaches [15]). The key insight of this step is
to filter out a predicate if it cannot be distinguished from its negation by any
positive-negative example pair. Finally, we search for formulas over the relevant
predicates that cover our set of examples. We show that a greedy algorithm
based on weighted set-cover is quite effective in finding non-trivial and optimal
specifications quickly – it infers complex commutativity conditions in seconds.

Main contributions. The main contributions of this work are:

– A new sampling-based “black box” approach for learning specifications in
fragments consisting of quantifier-free formulas over a finite number of re-
lation symbols. The key insights of our technique are: type-aware sampling,
sample reduction, relevant predicate discovery and efficient formula search.

– An instantiation of the approach for learning commutativity specifications
including a specialized sampling procedure.

– An experimental evaluation illustrating that our approach quickly learns
practical commutativity specifications of fundamental data types such as
hash map, set, array list, union find and others. We further show that learn-
ing these specifications is beyond the reach of current approaches.

2 Overview

We next illustrate our approach on an example: inferring the conditions for when
two insertions in a Map data type commute. The aim of this section is to provide
an intuitive understanding of the general framework presented later.

Commutativity. Consider a standard Map data type, supporting the methods
get(k)/r and put(k, v)/r, where put returns the old value r under the key k.
We seek to infer the commutativity specification for the method pair put/put.
Two method invocations commute if they can always be reordered without any
observable effect. In our case, put(k1, v1)/r1 and put(k2, v2)/r2 commute if and
only if they access different keys or both leave the map unmodified, captured as:

ϕ(k1, v1, r1, k2, v2, r2) := k1 6= k2 ∨ v1 = r1 ∧ v2 = r2. (1)

When inferring logical specifications, we assume a fixed logical fragment that
defines our search space. Let us set this fragment to consist of arbitrary boolean
combinations of constraints over the numeric relations < and =.

k1 v1 r1 k2 v2 r2 +/-

1. 3 2 2 4 2 1 +
2. 1 0 0 2 0 -1 +
3. 2 0 0 1 0 -1 +
4. 2 0 -2 1 0 -1 +
5. 1 2 2 1 1 2 -
6. 1 -1 -1 1 1 -1 -

Fig. 2. Commutativity
and non-commutativity
examples of put/put.

Type-aware sampling. We treat the data type as a
black box, sampling it at random in order to obtain ex-
amples of commuting/non-commuting behaviors. We
first prepare a random data type state, then choose
random arguments for the methods, and finally in-
voke them in both orders. This way we obtain tuples
of arguments and return values which are classified as
positive (commuting) or negative (non-commuting).
Fig. 2 shows a sample of several examples for put/put.
As a pure random sample may contain many redun-
dant examples, we use a sampling method that tries
to rule out a large number of candidate specifications.

We say that examples have the same logical type if they cannot be distin-
guished by any formula in the fragment. For instance, examples 1 and 2 in Fig. 2
have the same logical type, as all basic predicates of the form x = y and x < y
have the same truth value on both 1 and 2 (where x, y ∈ {ki, vi, ri}). To rule out
as many candidates as possible, we need to diversify the logical types observed
in a sample. Thus, we first choose a formula representing the logical type of the
method arguments (e.g., v1 = v2 < k1 < k2 for examples 1 and 2), and then se-
lect concrete values that satisfy that formula. We finally test for commutativity
with these arguments.

Sample size reduction. We would ideally like to diversify the logical type of the
complete example, and not only the arguments. However, we cannot control what
the return values are, as we obtain these after executing the commutativity test.
This can lead to redundancy in the sample as some examples will have the same
logical type. We filter out such uninformative examples and obtain a significantly
smaller sample which covers exactly the same variety of logical types. Inference
over this reduced sample is much faster than over the larger one.

Discovery of relevant predicates. Logical specifications in our fragment consist
of disjunctions and conjunctions of literals. For example, when inferring a spec-
ification for put/put we search for a formula built from all possible literals over

the relations <, =, and the variables ki, vi, ri, namely, k1 = k2, k1 6= k2, k1 < k2,
k1 ≥ k2, v1 = r1, v2 = r2, etc. As we can see, literals such as k1 < k2 and k1 ≥ k2
do not occur in the target specification (1), and are therefore irrelevant for the
search. Thus, to reduce the formula search space, we introduce a procedure that
identifies irrelevant literals from the information provided by the sample. Infor-
mally, the idea is to look at a contradicting pair of literals such as k1 < k2 and
k1 ≥ k2. We then consider those pairs of commutativity examples that can be
distinguished only by the two contradicting literals. Examples 2 and 3 in Fig. 2
form such a pair and can be distinguished only by k1 < k2 and k1 ≥ k2. If the
two examples are either both positive or both negative, then the pair of literals
is irrelevant for distinguishing these examples. We rule out the pair if it is ir-
relevant for all pairs of examples (later we describe a more elaborate technique
that is able to rule out more literals). In our example, we obtain a reduced set
of literals: k1 6= k2, v1 = r1, v2 = r2,

Formula search. Finally, given a data sample (as in Fig. 2) and a set of literals, we
search for a formula which is consistent with the sample. We aim to infer sound
specifications. In the case of commutativity, this means that the specification
should always imply that two invocations do commute. Therefore, we search for
a formula which does not evaluate to true on negative examples yet evaluates to
true in as many positive examples as possible. To prevent overfitting, we search
for the smallest such formula. This is the reason why our approach requires
both positive and negative examples, for otherwise the formulas true and false
would be trivial solutions. To infer a formula meeting or objective, we developed
a procedure that interleaves exhaustive and greedy search.

Determining sample size. For the inference to be self-contained, we need an
automatic way to determine the sample size. We employ an intuitive approach:
new examples are drawn until the result of the formula search stabilizes. To
confirm the stabilization, we draw examples in blocks, each block being twice as
large as the previous one. For every new block we run the formula search, and if
it produces the same outcome twice in a row, we declare the formula as stable.
The exponential increase of the block size ensures that we restart the search at
most a logarithmic number of times, and that we draw at most linearly more
examples than required.

In what follows, we first describe a general framework for learning specifica-
tions belonging to fragments consisting of quantifier-free formulas over a finite
number of relation symbols. Then, we show how to instantiate our approach
for learning practical commutativity specifications (belonging to a restriction of
the general fragment), and finally we discuss an experimental evaluation on a
number of real world data structures.

3 Background

In this section we introduce several key notions from logic that are essential for
addressing the problem of specification inference. In particular, the two concepts

that we will rely upon later sections are definable relations and logical types.
The family of definable relations forms the hypothesis class that an inference
algorithm considers to explain the observed data, and the complexity of that
class governs the difficulty of inference. A logical type abstracts all data points
carrying the same information with respect to the hypothesis class. Among other
uses, types are crucial when estimating the quality of a data sample.

Definition 1. A structure X consists of a carrier set, a set of relations and
functions over the carrier, and relation and function symbols naming them.

We think of a structure X as providing the context for interpreting logical
formulas. The first-order language of X consists of all first-order formulas built
using equality and the symbols mentioned by the structure. For a formula ϕ(u)
from the language and a tuple u of elements from the carrier, we shall use the
standard notation X |= ϕ(u/x) to state that ϕ(x) holds true for u.

In general, not all relations over the carrier can be expressed by formulas over
a structure’s language. In the present work, we consider relations expressible in
a boolean closed fragment L of the full language of X:

Definition 2. A relation h over X is L-definable if there exists a formula ϕ(x) ∈
L such that for any tuple u ∈ h we have that u ∈ h ⇐⇒ X |= ϕ(u/x).

Looking for a specification in the fragment L implies that we need to approximate
an unknown relation c with an L-definable relation h, given a finite sample of c.
Thus, the family H of all L-definable relations forms our hypothesis class.

We will make heavy use of a natural abstraction that a logic induces over
tuples of elements. Two tuples u and v have the same logical type23 if they
satisfy the same L-formulas:

Definition 3. The L-type tpL(u) of a any tuple u over the carrier of X is the
set of formulas Φ(x) = {ϕ(x) ∈ L | X |= ϕ(u/x)} that it satisfies.

In other words, tuples having the same L-type are indistinguishable by formulas
in the fragment L. In turn, this determines the structure of the L-definable
relations. Let us call the set {u ∈ Xn | tpL(u) = Φ(x)} the preimage of Φ(x).
The collection of all such preimages partitions the set of tuples, and moreover

Observation 1. Every L-definable relation is an unique disjoint union of preim-
ages of L-types.

Therefore, a relation is L-definable if and only if it does not separate any type
preimage into two parts. Later, we will make extensive use of this fact.

In our work, we often need a tangible way to manipulate logical types: we
would like to replace a type (a potentially infinite collection of formulas) with a
finite description (i.e., just a single formula).

2 Logical types should not be confused with the concept of types in type theory.
3 To find more about logical types the reader can consult [17,2], or the classic [3,10].

Definition 4. A type Φ(x) is called isolated when some formula ϕ(x) ∈ Φ(x)
generates it, that is for all ψ(x) ∈ Φ(x) we have that X |= ∀x. ϕ(x)→ ψ(x).

However, we would like an even stronger property to hold true, namely that the
preimage of the type Φ(x) be L-definable. This is important for obtaining data
samples with a chosen type. Fortunately, the boolean closedness of the fragment
ensures that a preimage is L-definable if and only if the type is isolated:

tpL(u) = Φ(x) ⇐⇒ X |= Φ(u/x) ⇐⇒ X |= ϕ(u/x) (2)

In order to guarantee that we work with isolated types we will impose certain
restrictions on the family of definable relations. Let L(x) denote the subfragment
of L consisting of all the formulas ϕ(x) ∈ L having free variables among x, where
as usual x is a finite list of distinct variables.

Observation 2. If the family of L(x)-definable relations is finite, then there
are finitely many L(x)-types, and all of them are isolated.

We shall focus on the setting where: (i) the structure X is relational, i.e.,
it mentions no function symbols (including constants); (ii) the relation symbols
are finitely many; and (iii) L(x) is the quantifier-free fragment of X. Combined,
these conditions guarantee that there are finitely many L(x)-definable relations
in the structure X, and therefore we can leverage Observation 2. We will further
assume that formulas are in negation normal form, i.e., that all negations are
pushed in front of atomic subformulas.

4 Learning formulas

We next describe our approach to learning logical formulas from examples over
a structure X. We first state our learning objective, i.e., which formula to select
given a sample. Then, we discuss how we search for such a formula. Finally, we
present a way to reduce the formula search space by discarding irrelevant literals.

4.1 Learning objective

Given a sample (s+, s−) of positive and negative examples from an unknown
relation c over the carrier of X, we would like to infer a definition of c in the
logical fragment L(x). It is important to note that such a definition need not exist
in general. That is why, our goal will be to find a formula that defines a relation
h ∈ H that best approximates c in our hypothesis class H of L(x)-definable
relations. Two natural approximation criteria are: best under-approximation,
i.e., the maximal h ⊆ c, and best over-approximation, i.e., the minimal h ⊇ c.
We shall work with under-approximations but all the machinery can be used
directly for over-approximations directly as the two notions are dual. Recalling
Observations 1 and 2 we establish the existence of best approximations:

Theorem 1. The best under-approximation h ∈ H to any relation c over X
equals the disjoint union

⋃
{t ⊆ c | t is a preimage of some type}.

However, we can search for this h only indirectly, for we merely have an access
to the finite sample (s+, s−) instead of the complete relation c. Our learning
objective will be to find a hypothesis h that includes a maximum number of
positive examples, while excluding all negative ones. In other words, we have
the following optimization problem over the hypothesis class H:

maximize |h ∩ s+|, subject to h ∩ s− = ∅ (3)

In general, an optimal solution to this objective is not unique. Moreover, for a
learning procedure we need an effective criterion telling us when a candidate
hypothesis satisfies (3).

Definition 5 (Observed status). Call the observed status of a type Φ(x) with
a preimage t: positive if s+ ∩ t 6= ∅ and s− ∩ t = ∅; negative if s+ ∩ t = ∅ and
s− ∩ t 6= ∅; ambiguous if s+ ∩ t 6= ∅ and s− ∩ t 6= ∅. Otherwise, call it missing.

Theorem 2. A hypothesis h ∈ H is optimal with respect to (3) for a given
sample (s+, s−) if and only if for every tuple u from X with non-missing type

u ∈ h ⇐⇒ tpL(x)(u) is positive

u 6∈ h ⇐⇒ tpL(x)(u) is negative or ambiguous

The theorem follows from Observation 1. Note that even if a tuple belongs
to s+, its type might still be ambiguous as another tuple of the same type
might belong to s−. Optimal hypotheses cannot be further distinguished by the
sample (s+, s−), and so we need an additional principle to select one of them
such that we avoid overfitting. We shall rely on the minimum description length
principle [18,22,19], which suggests to search for a solution of (3) defined by a
formula of minimal size. This is also important for human-readability.

4.2 Formula search

To find a solution to (3) we combine an exhaustive search interleaved with a
greedy algorithm. In accordance with Theorem 2 we consider the subset s′+ ⊆ s+
of positive examples having a type with a positive observed status. We search
until we find a formula that evaluates to true on all of s′+, and evaluates to false
on all of s−. By Theorem 2, the discovered formula satisfies (3). By Theorem 1, at
least one optimal hypothesis exists, and therefore the search always terminates.
During the search, we try to minimize the size measure given by:

‖true‖ = ‖false‖ = 0; ‖literal‖ = 1; ‖ϕ∧ψ‖ = ‖ϕ∨ψ‖ = 1+‖ϕ‖+‖ψ‖ (4)

We enumerate the formulas of L(x) in increasing size, via a simple dynamic
programming approach that alone guarantees finding a formula of minimum
size. We employ the standard heuristic to consider two formulas equivalent if
they produce the same results on the sample s+ ∪ s−. Exhaustive enumeration,
however, is feasible for inferring small formulas only. This is why we interleave

it with a greedy algorithm, which does not guarantee minimality, but is much
faster in practice. For each formula size i, we consider the set G of conjunctions
which have size smaller than i, and also evaluate to false on all of s−. From those,
we try to build a disjunction

∨
F which covers all of s′+, where F ⊆ G. To find

a disjunction of small size, we phrase the problem as an instance of weighted set
cover, and use a greedy approximation. We weight each conjunction ϕ ∈ G with
‖ϕ‖ and seek a cover F ⊆ G of s′+ with small total weight. We run a standard
greedy algorithm to produce a cover F . If the cover has less than 2i formulas,
we terminate the search; else, we move on to size i+ 1.

4.3 Predicate discovery

We now describe how to reduce the formula search space L(x) by restricting the
set of literals considered during formula enumeration. We prune formulas that
contain literals irrelevant for explaining the sample (s+, s−). The approach has
to be instantiated for the specific structure X under consideration, and we first
illustrate it for the two-valued boolean algebra {0, 1}, or equivalently for the
case of learning propositional formulas.

Two-valued case. Here, free variables range over 0–1, and our fragment L(x) has
a relation T interpreted as T (x) ⇐⇒ x = 1. The logical type of every tuple u
is characterized by a single conjunction

∧
Qi, where Qi = T (xi) ⇐⇒ ui = 1

and Qi = ¬T (xi) ⇐⇒ ui = 0. Therefore, in the two-valued case no distinct
tuples can have the same logical type, and we can identify the type of a tuple
with the tuple itself, i.e., a 0–1 valued vector.

Definition 6. A sample (s+, s−) of n-tuples is monotone in the i-th coordinate,
if for all tuples u and v with |u| = i − 1, |u| + |v| = n − 1 we have that
(u, 0,v) ∈ s+ implies (u, 1,v) 6∈ s−. Similarly, the sample is antitone in the i-th
coordinate if we instead require that (u, 1,v) ∈ s+ implies (u, 0,v) 6∈ s−.

If a sample (s+, s−) is monotone in i, then we can extend it to an optimal
hypothesis h with the similar property of (u, 0,v) ∈ h implying (u, 1,v) ∈ h. A
folk theorem states that any formula defining a relation with this property can be
converted to an equivalent formula not containing the literal ¬T (xi). Therefore,
in our search for an optimal hypothesis we can prune formulas containing this
literal. Analogously, we can prune T (xi) when (s+, s−) is antitone in i.

Generalization. To handle more general logical fragments, we shall abstract the
notion of monotonicity from the two-valued case. There, the concept of a tuple
and its type essentially coincided; we had a condition over pairs tuples (u, 0,v),
(u, 1,v) that increase (or decrease) in their i-th coordinate. In the more general
case, we shall use a condition over logical types and not tuples. As a type assigns
a truth value to every literal and (in our fragment) formulas are combinations
of literals, the role of coordinates will be played by the literals themselves. For
each literal λ we assume a neighbor relation Nλ that relates pairs of types for
which the truth value of λ increases from false to true, i.e., (Φ, Ψ) ∈ Nλ must
imply ¬λ ∈ Φ and λ ∈ Ψ (the converse need not hold).

Definition 7. Given a literal λ and a neighbor relation Nλ, we say that a sample
(s+, s−) is Nλ-unate when for all pairs of types (Φ, Ψ) ∈ Nλ, if Φ has a positive
observed status, then Ψ has a positive or a missing observed status.

In the two-valued case, we implicitly used the relation: (Φ, Ψ) ∈ Nλ if and
only if the Ψ is obtained from Φ by switching the truth value of λ, but of no
other literals. This is too restrictive in general, as switching the truth value of
one literal may require a switch in another. For example, consider logical types
in the order structure (Z, <) of the integers. There, switching x 6= y from false
to true also requires switching either x < y or y < x from false to true.

We now define when a neighbor relation Nλ is admissible. In general such
relations have to be derived for the specific structure under consideration. To
gain more flexibility, we shall allow Nλ to depend on the sample (s+, s−) for
which we are doing predicate discovery, i.e., Nλ = Nλ(s+, s−).

Definition 8. A family of neighbor relations Nλ(s+, s−) is admissible if for ev-
ery sample (s+, s−) with no missing types the best hypothesis is definable without
any literals ¬λ for which (s+, s−) is Nλ(s+, s−)-unate.

Neighbors for linear orders. We now give a suitable neighbor relation Nλ for the
order structure (Z, <) of the integers (used in Sec. 6.1). Here, every logical type is
equivalent to an ordered partition of the variables x: equal variables form a class,
and classes are ordered linearly. For example, the type generated by the formula
x1 < x2 = x3 < x4 is equivalent to the ordered partition {x1} < {x2, x3} < {x4}.
We shall manipulate types via two operations on adjacent classes: we can swap
their position, or we can merge them into a single class. Given a sample (s+, s−),
we say that two types conflict if one is positive, while the other is either negative
or ambiguous. We are now ready to define Nλ ([x] denotes the class of x):

1. (Φ, Ψ) ∈ Nx<y ⇐⇒ y < x ∈ Φ, x < y ∈ Ψ ; swapping [x] and [y] in Ψ gives
Φ; merging [x] and [y] in Ψ gives a type in conflict with Ψ .

2. (Φ, Ψ) ∈ Nx 6=y ⇐⇒ x = y ∈ Φ, x 6= y ∈ Ψ ; merging [x] and [y] in Ψ gives
Φ; swapping [x] and [y] in Ψ gives a type not in conflict with Ψ .

3. (Φ, Ψ) ∈ Nx≤y ⇐⇒ (Ψ, Φ) ∈ Ny<x and (Φ, Ψ) ∈ Nx=y ⇐⇒ (Ψ, Φ) ∈ Ny 6=x.

From an admissible family Nλ we obtain the resulting predicates by pruning
literals ¬λ for which the sample (s+, s−) is Nλ-unate. We then search for a
formula as described in Section 4.2. Because of missing types, the above method
may prune literals which are required for finding the optimal hypothesis. Thus,
our pruning approach is a heuristic that relies on good samples.

5 Sampling

When inferring specifications from data, it is important to ensure the data is
of sufficient quality. In this section we present a sampling strategy based on a
heuristic measure of the informativeness of a sample. Then, we give a simple al-
gorithm for removing redundant observations from a sample. Finally, we describe
a method to adaptively determine the sample size.

5.1 Type-aware sampling

Recall that our learning objective is to identify a hypothesis h that best approx-
imates an unknown relation c. We have access to c only as a black-box: we can
basically choose a tuple u and test whether it belongs to c or not, thus obtaining
a sample of positive s+ and negative s− examples. We want to draw tuples such
that the obtained sample (s+, s−) gives us most information about c. We shall
consider one sample more informative than another if it rules out more candidate
hypotheses from our class H of L(x)-definable relations.

Measure. We can roughly quantify this notion of informativeness via logical
types. Theorem 2 tells us that if the observed status of a type is not missing,
we know how to classify all other tuples having that type. This suggests that
we should increase the number of types observed in the sample. However, we
also need to account for the case where c is not definable in our fragment. It
might be that the observed status of some type is positive, but there exists some
example that when added to our sample will switch this status to ambiguous,
forcing us to reclassify all tuples having this type as negative. Let us call the true
status of a type Φ(x) its status with respect to the “sample” c+ = {u | u ∈ c},
c− = {u | u 6∈ s−}, i.e., when we add all possible tuples. Then our goal is to
maximize the measure given by the number of types that have their true status
(i.e., w.r.t. (c+, c−)) equal to their observed status (i.e., w.r.t. (s+, s−)).

Strategy. Of course, we cannot calculate this measure directly, as all we know is
the observed status of a type. Thus, in the process of sampling we need to balance
two conflicting factors: diversity and confidence. On one hand, we would like the
sample to be as diverse as possible and to contain examples from many types.
On the other hand, we would like to have high confidence that the observed
status of every type matches its true status. To control this trade-off we assume
two parameters: the total number m of examples to draw (discussed further in
Section 5.3) controls the diversity, and the number k of examples to draw from
a single type controls the confidence. Note that once the observed status of a
type becomes ambiguous, we can stop drawing more examples from that type,
as it will remain ambiguous. The strategy is summarized in Fig. 3.

Sample(X,L, c,m, k)

s+, s− ← ∅,∅
while |s+|+ |s−| < m

choose an unambiguous L-type Φ(x) at random
while Φ(x) is unambiguous and #{u ∈ s+ ∪ s− | X |= Φ(u/x)} < k

choose u : X |= Φ(u/x) at random
s+ ← s+ ∪ {u} if u ∈ c
s− ← s− ∪ {u} if u 6∈ c

return (s+, s−)

Fig. 3. Type-aware sampling from a relation c. The algorithm draws m examples in
total, with at most k of them having the same logical type.

Sample size reduction. Once we have a sample we can optimize its size without
reducing its informativeness by removing examples as long as we preserve the
observed status of every type. We need to keep a single example of any type with
a positive or a negative observed status, and two examples, one positive and one
negative, from any type with an ambiguous observed status. This size reduction
plays a role when we decide how many examples to draw (Section 5.3).

Guarantees. If we obtain a sample of maximal informativeness, i.e., in which
every type has its observed status equal to its true status, then we are guaranteed
to infer (the best) sound approximation. Such a sample always exists (as there are
finitely many logical types) but obtaining it is often infeasible in practice. Thus,
we can combine our black-box approach with white-box verification, e.g., [12].

5.2 Black-box interface

In our sampling algorithm we assumed that we sample the unknown relation c
by generating tuples u and feeding them to a black-box which classifies them
as positive or negative. However, this is not always the case in general (e.g, for
commutativity, Section 6.2). We might be able to feed the black-box only a part
v of u, and only then obtain the rest w (i.e., u = (v,w)). In this case, we cannot
control the type of the whole u but only of v. This requires only a local change
to the type-aware sampling algorithm: we choose a random type Φ(y),y ⊆ x to
generate v, and then feed v to the black-box to obtain the complete example u.
From there on, we continue as before, considering the type of u and not v.

5.3 Hypothesis stabilization

We now discuss how to reliably determine the sample size m. Instead of fixing the
number m a priori, we draw new examples until the result of the formula search
stabilizes. We realize this strategy by interleaving a sampling step with a formula
search step. If the search gives the same result two consecutive times, then we
return the discovered formula. The sampling begins with an initial number of m0

examples and, at each subsequent step i+ 1 draws twice as many new examples
as the previous step, i.e., mi+1 = 2mi. After each sampling step, we run the
search from scratch on all examples collected so far. As the search might take
too long due to insufficient data, we run each search no longer than the time ti
taken for sampling at the same step. The total running time is not much longer
compared to a single run over m examples: we restart the search Θ(logm) times.
The following theorem guarantees that we terminate:

Theorem 3. If sample size reduction is applied, the required search time t′i
grows sublinearly with the time limit ti, i.e, t′i = o(ti).

The theorem holds because t′i grows with the reduced sample size which in
turn is bounded by the number of types in the logical fragment. On the other
hand, without sample size reduction we are unlikely to terminate, as then the
number of examples for which we perform a search is proportional to mi, and
therefore we have that t′i = Ω(ti) (provided the sampling time ti is linear in mi).

6 Inferring commutativity specifications

In this section, we apply the approach discussed so far to the problem of learning
commutativity specifications. Given a data structure (described via an abstract
specification or a concrete implementation), our goal is to infer a commutativity
specification for every pair of its methods.

6.1 Commutativity specifications

A commutativity specification states when two method invocations commute.
Consider two executions that start in the same initial state σ:

m1(u1)/v1 ; m2(u2)/v2 m2(u2)/w2 ; m2(u1)/w1 (5)

If both executions end in the same state, v1 = w1, and v2 = w2, we say that
the two invocations m1(u1)/v2 and m2(u1)/v2 commute in σ. A commutativity
specification for m1, m2 is a formula ϕ(σ,x,y), which given a concrete initial
state σ, arguments x = u1u2, and return values y = v1v2 describes ifm1(u1)/v2

and m2(u1)/v2 commute. Sound specifications always imply that invocations
commute (cf. the objective from Section 4.1). State independent ones do not
mention the state σ, i.e., they have the form ϕ(x,y). Our work is able to learn
optimal state independent approximations of state dependent specifications.

The logical fragment we will use consists of quantifier-free formulas built from
integer and boolean variables, the predicates = and <, and the standard boolean
operations. Formulas in this fragment have an arbitrary boolean structure and
are expressive enough to capture a large number of commutativity specifications.

6.2 Sampling for commutativity

We now describe an instantiation of the sampling approach from Section 5.1.
Here, an example u1u2v1v2 consists of the combined arguments and return
values of a pair of commuting or non-commuting method invocations. To produce
an example, we generate random arguments u1u2 and an initial state σ, and then
execute the methods in both orders. The outcome is two states σ1 and σ2, and
two pairs of return values v1v2 and w1w2. If the states and the return values
match, we have a positive example of commutativity. Otherwise, we have two
negative examples. To compare states we assume that an abstract equality check,
Equal(σ1, σ2), is provided (naturally, we reason at the abstract level as opposed
to the bit for bit concrete level).

7 Evaluation

We implemented our approach, and experimented with inferring commutativity
specifications for method pairs of 21 data types. Some of these (e.g., accumu-
lator, set, map, array list, 1-d tree, union-find) are well-known in the context

of commutativity [23,14,9,12,13,1,4] while others are variants of multiset, par-
tial map, bit list, 6 variations of union-find, etc. We also selected classic data
structures such as stack, queue and heap. For all data structures, we aimed to
discover a state independent specification in the fragment of Section 6. We used
the strategy from Section 5.3, obviating the need for setting the sample size in
advance. We have set the initial sample size to 5000 by experimenting with Set

and Map. We have used this value for all other structures. Our tool inferred the
best approximation in all cases. For example, we inferred the following specifi-
cation for the method pair unite(a1, b1)/r1, unite(a2, b2)/r2 of UnionFind 6,
where unite(a, b)/r unites the classes of a and b under the representative of the
class of a, and also returns whether a modification was actually performed:

[
(a1 = a2 ∨ a1 = b2 ∨ a2 = b1) ∧ r1 ∧ r2

]
∨ a1 = b1 ∨ a2 = b2 ∨ (¬r1 ∧ ¬r2) (6)

Data structure Pairs Size Disj. #Samples #Types Sampl. Search P.d.

Set 10 5 3 15 001 11/12 120 0.4 16.0x
Map 3 5 3 15 000 2492/4683 1.4s 600 33.3x
MaxRegister 3 3 3 15 000 20/75 80 3.2 10.9x
1DTree 6 9 3 15 000 31/75 240 2.6 11.9x
IntProximityQuery 10 5 3 15 000 19/75 130 1.4 18.6x
RangeUpdate 3 11 1 15 000 208/300 330 54 3.7x
Accumulator 3 1 1 15 000 3/3 35 0.06 3.3x
Queue 10 7 3 15 001 6/6 96 0.6 4.7x
Stack 10 7 3 15 001 6/6 83 0.3 3.3x
MinHeap 10 7 3 15 001 6/6 85 0.8 4.0x
MultiSet 10 9 3 15 000 51/75 170 3.3 2.3x
PartialMap 15 5 3 22 500 1987/4683 1.4s 440 43.2x
UnionFind 1 6 3 3 17 500 75/75 140 9.7 8.0x
UnionFind 2 6 5 3 32 500 75/75 290 31 2.7x
UnionFind 3 6 5 1 45 000 75/75 380 59 2.5x
UnionFind 4 6 3 3 30 001 247/300 520 110 2.5x
UnionFind 5 6 11 3 105 001 247/300 2.3s 470 1.6x
UnionFind 6 6 17 9 75 000 247/300 1.6s 550 36.4x
BitTextEditor 36 7 3 15 001 4/4 42 0.3 4.3x
ArrayList 28 7 3 145 001 1403/4683 2.4s 710 23.9x
BitList 120 19 9 75 000 150/150 920 210 19.5x

Fig. 4. Experimental results averaged over 8 runs. Times are in ms (unless indicated).

Fig. 4 summarizes our experimental results over 8 runs. For every data struc-
ture we show the averaged maximum over all method pairs. These numbers are:
inferred formula size (Size), largest disjunct size (Disj.), number of drawn ex-
amples (#Sample), number of observed logical types vs. their upper bound
(#Types), sampling time (Sampl.), formula search time (Search), and the
search speedup achieved via predicate discovery (P.d.). The reduced sample
size is proportional to the number of observed types.

20 000 40 000 60 000 #Samples

1000

2000

3000

#Types

put put

put put*

get put

get put*

get get

get get*

Fig. 5. Type-aware vs. random sampling (*) for 6 method pairs of Map. The method
pairs produce tuples with 6 (put/put), 5 (get/put), and 4 (get/get) components.

Our results indicate that the approach is effective for learning non-trivial
specifications. Further, stabilizing the inferred formula is a reliable way to de-
termine a good sample size. By filtering examples of the same logical type, we
significantly reduced the input sample size for the later formula search, and com-
bining exhaustive and greedy search was fully sufficient for inferring all of the
specifications. The results also show that predicate discovery dramatically re-
duces search time for more complex specifications. Finally, type-aware sampling
successfully provided all observations necessary for inference.

We also compared type-aware with pure random sampling. Fig. 5 shows the
number of examples vs. observed types of typical inference runs for Map. The
curve of each run ends when formula stabilization was confirmed. We observe
that: (i) type-aware sampling explored new types more quickly than pure ran-
dom sampling, but only when sampling larger tuples (about 6 components in
this particular case); and (ii) type-aware sampling stabilized the inferred for-
mula much earlier (15 000 vs. 75 000 examples). In fact, in our experiments, we
observed large variance in stabilization time when sampling purely at random.

8 Related work

There has been substantial interest in learning program invariants from concrete
executions [5,8,7,21,20,6,16]. We evaluated several of these approaches, including
[5,21,20,16]. Unfortunately, none of them could infer the necessary specifications
and match our results.

Daikon [5] infers conjunctions of predefined templates that stay invariant
during program execution. DIG [16] infers polynomial invariants over various
algebras, e.g., min-plus and max-plus. Even though both tools support some
form of disjunctive invariants, in our case they could only infer rather crude
approximations to the target specification. A reason for this is that disjunctions
abound in the context of commutativity [12]. That is why, in contrast to Daikon
and DIG, our approach aims at learning free-form boolean expressions. That

said, our approach is not strictly better. Daikon scales well when the number of
relations in the fragment increases, and DIG specializes in polynomial invariants.

Similarly to us, the approaches outlined in [21,20,6] also focus on fragments
with rich support for disjunctions. However, their goal is to support program
verification, and so they learn invariant properties that separate all positive
from all negative examples in a given sample. This is not suitable for learn-
ing specifications, due to the fact that: (i) learning fails if a sample cannot be
separated by a classifier, even though a good approximation exists (cf. (3) in
Section 4.1); (ii) even if the sample can be separated, the inferred classifier can
be too approximative to be useful, compared to the best approximation.

These points are especially true for the method in [21] which is tied to an
expressive fragment (arbitrary boolean combinations of half-planes) and prone
to overfitting, as we observed in our experiments with it. In [20] formula search
is performed stochastically. This has the flexibility of supporting a variety of
fragments, but can be highly sensitive to randomness, and can also have issues
with convergence. We could not observe the approach terminating when inferring
commutativity specifications over five or more variables.

Program synthesis methods are also applicable to our problem, i.e., we can
simply ask for a program encoding the target specification. The technique in [11]
synthesizes a program by querying a black-box input-output oracle. However, it
also relies on a verification oracle, and in our setting this requirement can be too
strong: the oracle needs to reason about the data type implementation, which in
turn can be quite complex. The approach in [7] replaces the verification oracle
with “universal examples” which distinguish every possible candidate specifica-
tion. However, in the case of commutativity, we cannot directly query whether
such an example is positive or negative, as a part of the example (the method
return values) is actually generated by the query itself. Interestingly, our type-
aware sampling can be seen as generalization of the “universal examples”.

9 Conclusion

We presented a new “black-box” approach for learning specifications in the frag-
ment of quantifier-free formulas over a finite number of relation symbols. The
key insight is to treat uniformly the examples of the same logical type, i.e., exam-
ples that are indistinguishable by the logical fragment. Our approach introduces
new techniques for obtaining small and informative samples, discovering relevant
predicates, fast search procedure, and a way to adaptively determine sample size.

For our evaluation, we focused on automatically learning commutativity spec-
ifications. These are fundamental to various areas of computer science, yet are
tricky to write manually. Our results indicate that the approach is practically
effective – our tool quickly inferred non-trivial, useful commutativity specifica-
tions, beyond the reach of any existing work.

References

1. Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M.
Michael, and Martin T. Vechev. Laws of order: expensive synchronization in
concurrent algorithms cannot be eliminated. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011, 2011.

2. P.J. Cameron. Oligomorphic Permutation Groups. Cambridge Studies in Philoso-
phy. Cambridge University Press, 1990.

3. C.C. Chang and H.J. Keisler. Model Theory. Studies in Logic and the Foundations
of Mathematics. Elsevier Science, 1990.

4. Dimitar Dimitrov, Veselin Raychev, Martin T. Vechev, and Eric Koskinen. Com-
mutativity race detection. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, 2014.

5. Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic
detection of likely invariants. Sci. Comput. Program., 69(1-3):35–45, December
2007.

6. Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. Ice: A robust
framework for learning invariants. In Armin Biere and Roderick Bloem, editors,
Computer Aided Verification, volume 8559 of Lecture Notes in Computer Science,
pages 69–87. Springer International Publishing, 2014.

7. Patrice Godefroid and Ankur Taly. Automated synthesis of symbolic instruction
encodings from i/o samples. PLDI ’12, pages 441–452, New York, NY, USA, 2012.
ACM.

8. Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko. From tests to
proofs. In Proceedings of the 15th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems: Held As Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009,, TACAS
’09, pages 262–276, Berlin, Heidelberg, 2009. Springer-Verlag.

9. Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for
highly-concurrent transactional objects. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP 2008,
Salt Lake City, UT, USA, February 20-23, 2008, 2008.

10. W. Hodges. Model Theory. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2008.

11. Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In Proceedings of the 32Nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1, ICSE ’10, pages 215–224,
New York, NY, USA, 2010. ACM.

12. Deokhwan Kim and Martin C. Rinard. Verification of semantic commutativity
conditions and inverse operations on linked data structures. PLDI ’11, pages 528–
541, New York, NY, USA, 2011. ACM.

13. Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin Sui, and Keshav Pin-
gali. Exploiting the commutativity lattice. SIGPLAN Not., 46(6):542–555, 2011.

14. Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita
Bala, and L. Paul Chew. Optimistic parallelism requires abstractions. In Proceed-
ings of the ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementation, San Diego, California, USA, June 10-13, 2007, 2007.

15. Kenneth L. McMillan. Relevance heuristics for program analysis. In Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, 2008.

16. ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. Using
dynamic analysis to generate disjunctive invariants. ICSE 2014, pages 608–619.
ACM, 2014.

17. B. Poizat. A Course in Model Theory: An Introduction to Contemporary Mathe-
matical Logic. Universitext - Springer-Verlag. Springer New York, 2000.

18. J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471,
September 1978.

19. J. Rissanen. Information and Complexity in Statistical Modeling. Springer New
York, 2010.

20. Rahul Sharma and Alex Aiken. From invariant checking to invariant inference using
randomized search. In Armin Biere and Roderick Bloem, editors, Computer Aided
Verification, volume 8559 of Lecture Notes in Computer Science, pages 88–105.
Springer International Publishing, 2014.

21. Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and AdityaV.
Nori. Verification as learning geometric concepts. In Static Analysis, volume 7935
of Lecture Notes in Computer Science. 2013.

22. V.N. Vapnik. Statistical learning theory. Adaptive and learning systems for signal
processing, communications, and control. Wiley, 1998.

23. W. E. Weihl. Commutativity-based concurrency control for abstract data types.
IEEE Trans. Comput., 37(12):1488–1505, 1988.

	Learning commutativity specifications

