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Abstract. We show how to leverage reinforcement learning (RL) in or-
der to speed up static program analysis. The key insight is to establish
a correspondence between concepts in RL and those in analysis: a state
in RL maps to an abstract program state in analysis, an action maps
to an abstract transformer, and at every state, we have a set of sound
transformers (actions) that represent different trade-offs between preci-
sion and performance. At each iteration, the agent (analysis) uses a pol-
icy learned offline by RL to decide on the transformer which minimizes
loss of precision at fixpoint while improving analysis performance. Our
approach leverages the idea of online decomposition (applicable to pop-
ular numerical abstract domains) to define a space of new approximate
transformers with varying degrees of precision and performance. Using a
suitably designed set of features that capture key properties of abstract
program states and available actions, we then apply Q-learning with lin-
ear function approximation to compute an optimized context-sensitive
policy that chooses transformers during analysis. We implemented our
approach for the notoriously expensive Polyhedra domain and evaluated
it on a set of Linux device drivers that are expensive to analyze. The
results show that our approach can yield massive speedups of up to two
orders of magnitude while maintaining precision at fixpoint.

1 Introduction

Static analyzers that scale to real-world programs yet maintain high precision are
difficult to design. Recent approaches to attacking this problem have focused on
two complementary methods. On one hand is work that designs clever algorithms
that exploits the special structure of particular abstract domains to speed up
analysis [20, 21, 5, 10, 16, 15]. These works tackle specific types of analyses but the
gains in performance can be substantial. On the other hand are approaches that
introduce creative mechanisms to trade off precision loss for gains in speed [12,
19, 18, 9]. While promising, these methods typically do not take into account the
particular abstract states arising during analysis which determine the precision
of abstract transformers (e.g., join), resulting in suboptimal analysis precision
or performance. A key challenge then is coming up with effective and general
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approaches that can decide where and how to lose precision during analysis for
best tradeoff between performance and precision.

Our Work. We address the above challenge by offering a new approach for
dynamically losing precision based on reinforcement learning (RL) [24]. The key
idea is to learn a policy that determines when and how the analyzer should
lose the least precision at an abstract state to achieve best performance gains.
Towards that, we establish a correspondence between concepts in static analysis
and RL, which demonstrates that RL is a viable approach for handling choices
in the inner workings of a static analyzer.

To illustrate the basic idea, imagine that a static analyzer has at each pro-
gram state two available abstract transformers: the precise but slow Tp and the
fast but less precise Tf . Ideally, the analyzer would decide adaptively at each
step on the best choice that maximizes speed while producing a final result of
sufficient precision. Such a policy is difficult to craft by hand and hence we
propose to leverage RL to discover the policy automatically.

To explain the connection with RL intuitively, we think of abstract states
and transformers as analogous to states of a Go board and moves made by
the Go player, respectively. In Go, the goal is to learn a policy that at each
state decides on the next player action (transformer to use) which maximizes
the chances of eventually winning the game (obtaining a precise fixpoint while
improving performance in our case). Note that the reward to be maximized
in Go is long-term and not an immediate gain in position, which is similar to
iterative static analysis. To learn the policy with RL, one typically extracts a
set of features φ from a given state and action, and uses those features to define
a so-called Q-function, which is then learned, determining the desired policy.

In the example above, a learned policy would determine at each step whether
to choose action Tp or Tf . To do that, for a given state and action, the analyzer
computes the value of the Q-function using the features φ. Querying the Q-
function returns the suggested action from that state. Eventually, such a policy
would ideally lead to a fixpoint of sufficient precision but be computed quicker.

While the overall connection between static analysis and reinforcement learn-
ing is conceptually clean, the details of making it work in practice pose significant
challenges. The first is the design of suitable approximations to actually be able
to gain performance when precision is lost. The second is the design of features
φ that are cheap to compute yet expressive enough to capture key properties
of abstract states. Finally, a suitable reward function combining both precision
and performance is needed. We show how to solve these challenges for Polyhedra
analysis.

Main contributions. Our main contributions are:

– A space of sound, approximate Polyhedra transformers spanning different
precision/performance trade-offs. The new transformers combine online de-
composition with different constraint removal and merge strategies for ap-
proximations (Section 3).

– A set of feature functions which capture key properties of abstract states
and transformers, yet are efficient to extract (Section 4).
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– A complete instantiation of RL for Polyhedra analysis based on Q-learning
with linear function approximation (i.e., actions, reward function, Q-function).

– An end-to-end implementation and evaluation of our approach. Given a
training dataset of programs, we first learn a policy (based on the Q-function)
over analysis runs of these programs. We then use the resulting policy dur-
ing analysis of new, unseen programs. The experimental results on a set of
realistic programs (e.g., Linux device drivers) show that our RL-based Poly-
hedra analysis achieves substantial speed-ups (up to 515x) over a heavily
optimized state-of-the-art Polyhedra library.
We believe the reinforcement learning based approach outlined in this work

can be applied to speed up other program analyzers (beyond Polyhedra).

2 Reinforcement Learning for Static Analysis

In this section we first introduce the general framework of reinforcement learning
and then discuss its instantiation for static analysis.

2.1 Reinforcement Learning

Reinforcement learning (RL) [24] involves an agent learning to achieve a goal by
interacting with its environment. The agent starts from an initial representation
of its environment in the form of an initial state s0 ∈ S where S is the set of
possible states. Then, at each time step t = 0, 1, 2, . . . , the agent performs an
action at ∈ A in state st (A is the set of possible actions) and moves to the next
state st+1. The agent receives a numerical reward r(st, at, st+1) ∈ R for moving
from the state st to st+1 through action at. The agent repeats this process until
it reaches a final state. Each sequence of states and actions from an initial state
to the final state is called an episode.

In RL, state transitions typically satisfy the Markov property: the next state
st+1 depends only on the current state st and the action at taken from st. A policy
p : S → A is a mapping from states to actions: it specifies the action at = p(st)
that the agent will take when in state st. The agent’s goal is to learn a policy that
maximizes not an immediate but a cumulative reward for its actions in the long
term. The agent does this by selecting the action with the highest expected long-
term reward in a given state. The quality function (Q-function) Q : S × A → R
specifies the long term cumulative reward associated with choosing an action at
in state st. Learning this function, which is not available a priori, is essential for
determining the best policy and is explained next.

Q-learning and approximating the Q-function. Q-learning [25] can be
used to learn the Q-function over state-action pairs. Typically the size of the state
space is so large that it is not feasible to explicitly compute the Q-function for
each state-action pair and thus the function is approximated. In this paper, we
consider a linear function approximation of the Q-function for three reasons: (i)
effectiveness: the approach is efficient, can handle large state spaces, and works
well in practice [6]; (ii) it leverages our application domain: in our setting, it is
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Algorithm 1 Q-learning algorithm

1: function Q-learn(S,A, r, γ, α, φ)
2: Input:
3: S ← set of states,A ← set of actions, r ← reward function
4: γ ← discount factor, α← learning rate
5: φ← set of feature functions over S and A
6: Output: parameters θ
7: θ = Initialize arbitrarily (which also initializes Q)
8: for each episode do
9: Start with an initial state s0 ∈ S

10: for t = 0, 1, 2, . . . , length(episode) do
11: Take action at, observe next state st+1 and r(st, at, st+1)
12: θ := θ+α · (r(st, at, st+1)+γ ·maxat+1Q(st+1, at+1)−Q(st, at)) ·φ(st, at)

13: return θ

possible to choose meaningful features (e.g., approximation of volume and cost
of transformer) that relate to precision and performance of the static analysis
and thus it is not necessary to uncover them automatically (as done, e.g., by
training a neural net); and (iii) interpretability of policy : once the Q-function
and associated policy are learned they can be inspected and interpreted.

The Q-function is described as a linear combination of ` basis functions
φi : S × A → R, i = 1, . . . , `. Each φi is a feature that assigns a value to a
(state, action) pair and ` is the total number of chosen features. The choice of
features is important and depends on the application domain. We collect the
feature functions into a vector φ(s, a) = (φ1(s, a), φ2(s, a), . . . , φ`(s, a)); doing
so, the Q-function has the form:

Q(s, a) =
∑̀
j=1

θj · φj(s, a) = φ(s, a) · θT , (1)

where θ = (θ1, θ2, . . . , θ`) is the parameter vector. The goal of Q-learning with
linear function approximation is thus to estimate (learn) θ.

Algorithm 1 shows the Q-learning procedure. In the algorithm, 0 ≤ γ < 1
is the discount factor which represents the difference in importance between
immediate and future rewards. γ = 0 makes the agent only consider immediate
rewards while γ ≈ 1 gives more importance to future rewards. The parameter
0 < α ≤ 1 is the learning rate that determines the extent to which the newly
acquired information overrides the old information. The algorithm first initializes
θ randomly. Then, for each step t in an episode, the agent takes an action at,
moves to the next state st+1 and receives a reward r(st, at, st+1). Line 12 in
the algorithm shows the equation for updating the parameters θ. Notice that Q-
learning is an off-policy learning algorithm as the update in the equation assumes
that the agent follows a greedy policy (from state st+1) while the action (at)
taken by the agent (in st) need not be greedy.
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Table 1. Mapping of RL concepts to Static analysis concepts.

RL concept Static analysis concept

Agent Static analyzer
State s ∈ S Features of abstract state
Action a ∈ A Abstract transformer
Reward function r Transformer precision and runtime
Feature Value associated with abstract state features

and transformer

Once the Q-function is learned, a policy p∗ for maximizing the agent’s cu-
mulative reward is obtained as:

p∗(s) = argmaxa∈AQ(s, a). (2)

In the application, p∗ is computed on the fly at each stage s by computing Q for
each action a and choosing the one with maximal Q(s, a). Since the number of
actions is typically small, this incurs little overhead.

2.2 Instantiation of RL to Static Analysis

We now discuss a general recipe for instantiating the RL framework described
above to the domain of static analysis. The precise formal instantiation to the
specific numerical (Polyhedra) analysis is provided later.

In Table 1, we show a mapping between RL and program analysis concepts.
Here, the analyzer is the agent that observes its environment, which is the ab-
stract program state (e.g., polyhedron) arising at every iteration of the analysis.
In general, the number of possible abstract states can be very large (or infinite)
and thus, to enable RL in this setting, we abstract the state through a set of
features (Table 2). An example of a feature could be the number of bounded
program variables or the volume of a polyhedron. The challenge is to define
the features to be fast to evaluate, yet sufficiently representative so the policy
derived through learning generalizes well to unseen abstract program states.

Further, at every abstract state, the analyzer should have the choice between
different actions corresponding to different abstract transformers. The trans-
formers should range from expensive and precise to cheap and approximate.
The reward function r is thus composed of a measure of precision and speed and
should encourage approximations that are both precise and fast.

The goal of our agent is to then learn an approximation policy that at each
step selects an action that tries to minimize the loss of analysis precision at fix-
point, while gaining overall performance. Learning such a policy is typically done
offline using a given dataset D of programs (discussed in evaluation). However,
this is computationally challenging because the dataset D can contain many
programs and each program will need to be analyzed many times over during
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training: even a single run of the analysis can contain many (e.g., thousands) calls
to abstract transformers. Thus, a good heuristic may be a complicated function
of the chosen features. Hence, to improve the efficiency of learning in practice,
one would typically exercise the choice for multiple transformers/actions only
at certain program points. A good choice, and one we employ, are join points,
where the most expensive transformer in numerical domains usually occurs.

Another key challenge lies in defining a suitable space of transformers. As we
will see later, we accomplish this by leveraging recent advances in online decom-
position for numerical domains [20–22]. We show how to do that for the notori-
ously expensive Polyhedra analysis; however, the approach is easily extendable
to other popular numerical domains, which all benefit from decomposition.

3 Polyhedra Analysis and Approximate Transformers

In this section we first provide brief background on polyhedra analysis and online
decomposition, a recent technique to speed up analysis without losing precision
and applicable to all popular numerical domains [22]. Then we leverage online
decomposition to define a flexible approximation framework that loses precision
in a way that directly translates into performance gains. This framework forms
the basis for our RL approach discussed in Section 4.

3.1 Polyhedra analysis

Let X = {x1, x2, . . . , xn} be the set of n (numerical) program variables where
each variable xi ∈ Q takes a rational value. An abstract element P ⊆ Qn in
the Polyhedra domain is a conjunction of linear constraints

∑n
i=1 aixi ≤ c be-

tween the program variables where ai ∈ Z, c ∈ Q. This is called the constraint
representation of the polyhedron.

x1

x2 = 2

3x 2
-5x

1 
= 5

   x2

x2 = 10

x1 = 2

(2,2)

(2,5)

(5,10)

(1,0)

(1,0)

Fig. 1. Two representations of polyhedron
P : As conjunction of 4 constraints CP , and
as convex hull of 3 vertices and 2 rays GP .

Constraints and generator
representation. For efficiency, it is
common to maintain besides the con-
straint representations also the gen-
erator representation, which encodes
a polyhedron as the convex hull of a
finite set of vertices, rays, and lines.
Rays and lines are represented by
their direction. Thus, by abuse of
prior notation we write P = (CP ,GP )
where CP is the constraints represen-
tation (before just called P ) and GP
is the generator representation.

Example 1 Fig. 1 shows an example of the two representations of an abstract
element P in the Polyhedra domain. CP is the intersection of 4 linear constraints:

CP = {−x1 ≤ −2,−x2 ≤ −2, x2 ≤ 10, 3x2 − 5x1 ≤ 5}.
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GP is the convex hull of 3 vertices and 2 rays:

GP = {vertices, rays, lines} = {{(2, 2), (2, 5), (5, 10)}, {(1, 0), (1, 0)}, ∅}.

Notice that GP contains two rays in the same direction (1, 0); thus one of them
could be removed without changing the set of points in P .

During analysis, the abstract elements are manipulated with abstract trans-
formers that model the effect of statements and control flow in the program such
as assignment, conditional, join, and others. Upon termination of the analysis,
each program statement has an associated subsequent P containing all possible
variable values after this statement. The main bottleneck for the Polyhedra anal-
ysis is the join transformer (t), and thus it is the focus for our approximations.

Recently, Polyhedra domain analysis was sped up by orders of magnitude,
without approximation, using the idea of online decomposition [21]. The basic
idea is to dynamically decompose the occurring abstract elements into indepen-
dent components (in essence abstract elements on smaller variable sets) based on
the connectivity between variables in the constraints, and to maintain this (per-
manently changing) decomposition during analysis. The finer the decomposition,
the faster the analysis.

Our approximation framework builds on online decomposition. The basic idea
is simple: we approximate by dropping constraints to reduce connectivity among
constraints and thus to yield finer decompositions of abstract elements. These di-
rectly translate into speedup. We consider various options of such approximation;
reinforcement learning (in Section 4) will then learn a proper, context-sensitive
strategy that stipulates when and which approximation option to apply.

Next, we provide brief background on the ingredients of online decomposition
and explain our mechanisms for soundly approximating the join transformer.

3.2 Online Decomposition

Online decomposition is based on the observation that during analysis, the set
of variables X in a given polyhedron P can be partitioned as πP = {X1, . . . ,Xr}
into blocks Xt, such that constraints exist only between variables in the same
block. Each unconstrained variable xi ∈ X yields a singleton block {xi}. Using
this partition, P can be decomposed into a set of smaller Polyhedra P (Xt) called
factors. As a consequence, the abstract transformer can now be applied only on
the small subset of factors relevant to the program statement, which translates
into better performance.

Example 2 Consider the set X = {x1, x2, x3, x4, x5, x6} and the polyhedron:

P = {2x1 − 3x2 + x3 + x4 ≤ 0, x5 = 0}.

Here, πP = {{x1, x2, x3, x4}, {x5}, {x6}} is a possible partition of X with factors

P (X1) = {2x1 − 3x2 + x3 + x4 ≤ 0}, P (X2) = {x5 = 0}, P (X3) = ∅.
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The set of partitions of X forms a lattice with the ordering π v π′ iff every block
of π is a subset of a block of π′. Upper and lower bound of two partitions π1, π2,
i.e., π1 t π2 and π1 u π2 are defined accordingly.

The optimal (finest) partition for an element P is denoted with πP . Ideally,
one would always determine and maintain this finest partition for each output
Z of a transformer but it may be too expensive to compute. Thus, the online
decomposition in [20, 21] often computes a (cheaply computable) permissible
partition πZ w πZ . Note that making the output partition coarser (while keeping
the same constraints) does not change the precision of the abstract transformer.

3.3 Approximating the Polyhedra Join

Let πcom = πP1 t πP2 be a common permissible partition for the inputs P1, P2

of the join transformer. Then, from [21], a permissible partition for the (not
approximated) output is obtained by keeping all blocks Xt ∈ πcom for which
P1(Xt) = P2(Xt) in the output partition πZ , and fusing all remaining blocks
into one. Formally, πZ = {N} ∪ U , where

N =
⋃
{Xk ∈ πcom : P1(Xk) 6= P2(Xk)}, U = {Xk ∈ πcom : P1(Xk) = P2(Xk)}.

The join transformer computes the generators GZ for the output Z as GZ =
GP1(X\N ) × (GP1(N ) ∪GP2(N )) where × is the Cartesian product. The constraint
representation CZ is computed as CZ = CP1(X\N )∪conversion(GP1(N )∪GP2(N )).
The conversion algorithm has worst-case exponential complexity and is the most
expensive step of the join. Note that the decomposed join applies it only on the
generators GP1(N ) ∪ GP2(N ) corresponding to the block N .

The cost of the decomposed join transformer depends on the size of the block
N . Thus, it is desirable to bound this size by a threshold ∈ N. Let B = {Xk ∈
πcom : Xk ∩N 6= ∅} be the set of blocks that merge into N in the output πZ and
Bt = {Xk ∈ B : |Xk| > threshold} be the set of blocks in B with size > threshold.

Splitting of large blocks. For each block Xt ∈ Bt, we apply the join on
the associated factors: Z(Xt) = P1(Xt) t P2(Xt). We then remove constraints
from Z(Xt) until it decomposes into blocks of sizes ≤ threshold. Since we only
remove constraints from Z(Xt), the resulting transformer remains sound. There
are many choices for removing constraints as shown in the next example.

Example 3 Consider the following polyhedron and threshold = 4

Xt = {x1, x2, x3, x4, x5, x6},
Z(Xt) = {x1 − x2 + x3 ≤ 0, x2 + x3 + x4 ≤ 0, x2 + x3 ≤ 0,

x3 + x4 ≤ 0, x4 − x5 ≤ 0, x4 − x6 ≤ 0}.

We can remove M = {x4 − x5 ≤ 0, x4 − x6 ≤ 0} from Z(Xt) to obtain the
constraint set {x1−x2 +x3 ≤ 0, x2 +x3 +x4 ≤ 0, x2 +x3 ≤ 0, x3 +x4 ≤ 0} with
partition {{x1, x2, x3, x4}, {x5}, {x6}}, which obeys the threshold.

We could also remove M′ = {x2 + x3 + x4 ≤ 0, x3 + x4 ≤ 0} from Z(Xt) to
get the constraint set {x1 − x2 + x3 ≤ 0, x2 + x3 ≤ 0, x4 − x5 ≤ 0, x4 − x6 ≤ 0}
with partition {{x1, x2, x3}, {x4, x5, x6}}, which also obeys the threshold.
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We next discuss our choices for the constraint removal algorithm.
Stoer-Wagner min-cut. The first basic idea is to remove a minimal number

of constraints in Z(Xt) that decomposes the block Xt into two blocks. To do
so, we associate with Z(Xt) a weighted undirected graph G = (V, E), where
V = Xt. Further, there is an edge between xi and xj , if there is a constraint
containing both; its weight mij is the number of such constraints. We then
apply the standard Stoer-Wagner min-cut algorithm [23] to obtain a partition
of Xt into X ′t and X ′′t . M collects all constraints that need to be removed, i.e.,
those that contain at least one variable from both X ′t and X ′′t .

Example 4 Fig. 2 shows the graph G for Z(Xt) in Example 3. Applying the
Stoer-Wagner min-cut on G once will cut off x5 or x6 by removing the constraint
x4−x5 or x4−x6, respectively. In either case a block of size 5 remains, exceeding
the threshold of 4. After two applications, both constraints have been removed
and the resulting block structure is given by {{x1, x2, x3, x4}, {x5}, {x6}}. The
associated factors are {x1−x2+x3 ≤ 0, x2+x3+x4 ≤ 0, x2+x3 ≤ 0, x3+x4 ≤ 0}
and x5, x6 become unconstrained.

x1

x2

x3

x4

x5

x6

1

1

3

1

2

1

1

Fig. 2. Graph G for Z(Xt) in Example 3

Weighted constraint removal.
Our second approach for constraints
removal does not associate weights
with edges but with constraints. It
then removes greedily edges with high
weights. Specifically, we consider the
following two choices of constraint
weights, yielding two different con-
straint removal policies:
– For each variable xi ∈ Xt, we first compute the number ni of constraints

containing xi. The weight of a constraint is then the sum of the ni over all
variables occurring in the constraint.

– For each pair of variables xi, xj ∈ Xt, we first compute the number nij of
constraints containing both xi and xj . The weight of a constraint is then the
sum of the nij over all pairs xi, xj occurring in the constraint.

Once the weights are computed, we remove the constraint with maximum weight.
The intuition is that variables in this constraint most likely occur in other con-
straints in Z(Xt) and thus they do not become unconstrained upon constraint
removal. This reduces the loss of information.

Example 5 Applying the first definition of weights in Example 3, we get n1 =
1, n2 = 3, n3 = 4, n4 = 4, n5 = 1, n6 = 1. The constraint x2 +x3 +x4 ≤ 0 has the
maximum weight of n2 +n3 +n4 = 11 and thus is chosen for removal. Removing
this constraint from Z(Xt) does not yet yield a decomposition; thus we have to
repeat. Doing so {x3 + x4 ≤ 0} is chosen. Now, Z(Xt) \M = {x1 − x2 + x3 ≤
0, x2+x3 ≤ 0, x4−x5 ≤ 0, x4−x6 ≤ 0} which can be decomposed into two factors
{x1 − x2 + x3 ≤ 0, x2 + x3 ≤ 0} and {x4 − x5 ≤ 0, x4 − x6 ≤ 0} corresponding
to blocks {x1, x2, x3} and {x4, x5, x6}, respectively, each of size ≤ threshold.
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Algorithm 2 Approximation algorithm for Polyhedra join

1: function approximate join((πP1 , P1), (πP2 , P2), threshold)
2: Input:
3: (πP1 , P1), (πP2 , P2)← decomposed inputs to the join
4: threshold← Upper bound on size of N
5: Output: decomposed output (πZ , Z) of the join

6: Z :=
⋃
{P1(Xk) : P1(Xk) = P2(Xk)}, πZ := U . initialize output

7: B := {Xk ∈ πP1 t πP2 : Xk ∩N 6= ∅}, Bt := {Xt ∈ B : |Xt| > threshold}
. join factors for blocks in Bt and split the outputs via a split algorithm

8: for Xt ∈ Bt do
9: P ′ := P1(Xt) t P2(Xt)

10: s algo := split alg(Xt, CP ′), (C, π) := split(Xt, CP ′ , threshold, s algo)
11: for Xt′ ∈ π do
12: G(Xt′) := conversion(C(Xt′)), Z := Z ∪ (C(Xt′),G(Xt′))

13: πZ := πZ ∪ π
. merge blocks ∈ B \ Bt via a merge algorithm and apply join

14: m algo := merge alg(B \ Bt), Bm := merge(B \ Bt, threshold,m algo)
15: for Xm ∈ Bm do
16: Z := Z ∪ (P1(Xm) t P2(Xm)), πZ := πZ ∪ {Xm}

return (πZ , Z)

Merging blocks. The sizes of all blocks in B\Bt are ≤ threshold and we can
apply merging to obtain larger blocks Xm ≤ threshold to increase the precision
of the subsequent join. The join is then applied on the factors P1(Xm), P2(Xm)
and the result is added to the output Z. We consider the following three merging
strategies. To simplify the explanation, we assume that the blocks in B \ Bt are
ordered by ascending size:
1. No merge: None of the blocks are merged.
2. Merge smallest first: We start merging the smallest blocks as long as the size

stays below the threshold. These blocks are then removed and the procedure
is repeated on the remaining set.

3. Merge large with small: We start to merge the largest block with the smallest
blocks as long as the size stays below the threshold. These blocks are then
removed and the procedure is repeated on the remaining set.

Example 6 Consider threshold = 5 and B\Bt with block sizes {1, 1, 2, 2, 2, 2, 3,
5, 7, 10}. Merging smallest first yields blocks 1 + 1 + 2, 2 + 2, 2 + 3 leaving the
rest unchanged. The resulting sizes are {4, 4, 5, 5, 7, 10}. Merging large with small
leaves 10, 7, 5 unchanged and merges 3+1+1, 2+2, and 2+2. The resulting sizes
are also {4, 4, 5, 5, 7, 10} but the associated factors are different (since different
blocks are merged), which will yield different results in following transformations.

Need for RL. Algorithm 2 shows how to approximate the join transformer.
Different choices of threshold, splitting, and merge strategies yield a range of
transformers with different performance and precision depending on the inputs.
All of the transformers are non-monotonic, however the analysis always converges
to a fixpoint when combined with widening [2]. Determining the suitability of a
given choice on an input is highly non-trivial and thus we use RL to learn it.
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Table 2. Features for describing RL state s (m ∈ {1, 2}, 0 ≤ j ≤ 8, 0 ≤ h ≤ 3).

Feature ψi Extraction Typical ni Buckets for feature ψi

complexity range

|B| O(1) 1–10 10 {[j + 1, j + 1]} ∪ {[10,∞)}
min(|Xk| : Xk ∈ B) O(|B|) 1–100 10 {[10 · j + 1, 10 · (j + 1)]} ∪ {[91,∞)}
max(|Xk| : Xk ∈ B) O(|B|) 1–100 10 {[10 · j + 1, 10 · (j + 1)]} ∪ {[91,∞)}
avg(|Xk| : Xk ∈ B) O(|B|) 1–100 10 {[10 · j + 1, 10 · (j + 1)]} ∪ {[91,∞)}
min(|

⋃
GPm(Xk)| : Xk ∈ B) O(|B|) 1–1000 10 {[100 · j + 1, 100 · (j + 1)]} ∪ {[901,∞)}

max(|
⋃
GPm(Xk)| : Xk ∈ B) O(|B|) 1–1000 10 {[100 · j + 1, 100 · (j + 1)]} ∪ {[901,∞)}

avg(|
⋃
GPm(Xk)| : Xk ∈ B) O(|B|) 1–1000 10 {[100 · j + 1, 100 · (j + 1)]} ∪ {[901,∞)}

|{xi ∈ X : xi ∈ [lm, um] in Pm}| O(ng) 1–25 5 {[5 · h+ 1, 5 · (h+ 1)]} ∪ {[21,∞)}
|{xi ∈ X : xi ∈ [lm,∞) in Pm}|+ O(ng) 1–25 5 {[5 · h+ 1, 5 · (h+ 1)]} ∪ {[21,∞)}
|{xi ∈ X : xi ∈ (−∞, um] in Pm}|

4 Reinforcement Learning for Polyhedra Analysis

We now describe how to instantiate reinforcement learning for approximating
Polyhedra domain analysis. The instantiation consists of the following steps:

– Extracting the RL state s from the abstract program state numerically using
a set of features.

– Defining actions a as the choices among the threshold, merge and split meth-
ods defined in the previous section.

– Defining a reward function r favoring both high precision and fast execution.
– Defining the feature functions φ(s, a) to enable Q-learning.

States. We consider nine features for defining a state s for RL. The features
ψi, their extraction complexity and their typical range on our benchmarks are
shown in Table 2. The first seven features capture the asymptotic complexity of
the join [21] on the input polyhedra P1 and P2. These are the number of blocks,
the distribution (using maximum, minimum and average) of their sizes, and the
number of generators. The precision of the inputs is captured by considering the
number of variables xi ∈ X with finite upper and lower bound, and the number
of those with only a finite upper or lower bound in both P1 and P2.

As shown in Table 2, each state feature ψi returns a natural number, how-
ever, its range can be rather large, resulting in a massive state space. To ensure
scalability and generalization of learning, we use bucketing to reduce the state
space size by clustering states with similar precision and expected join cost. The
number ni of buckets for each ψi and their definition are shown in the last two
columns of Table 2. Using bucketing, the RL state s is then a 9-tuple consisting
of the indices of buckets where each index indicates the bucket that ψi’s return
value falls into.

Actions. An action a is a 3-tuple (th, r algo, m algo) consisting of:

– th ∈ {1, 2, 3, 4} depending on threshold ∈ [5, 9], [10, 14], [15, 19], or [20,∞).
– r algo ∈ {1, 2, 3}: the choice of a constraint removal, i.e., splitting method.
– m algo ∈ {1, 2, 3}: the choice of merge algorithm.
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All three of these have been discussed in detail in Section 3. The threshold values
were chosen based on performance characterization on our benchmarks. With the
above, we have 36 possible actions per state.

Reward. After applying the (approximated join transformer) according to
action at in state st, we compute the precision of the output polyhedron P1tP2

by first computing the smallest (often unbounded) box1 covering P1 t P2 which
has complexity O(ng). We then compute the following quantities from this box:
– ns: number of variables xi with singleton interval, i.e., xi ∈ [l, u], l = u.
– nb: number of variables xi with finite upper and lower bounds, i.e., xi ∈

[l, u], l 6= u.
– nhb: number of variables xi with either finite upper or finite lower bounds,

i.e., xi ∈ (−∞, u] or xi ∈ [l,∞).
Further, we measure the runtime in CPU cycles cyc for the approximate join

transformer. The reward is then defined by

r(st, at, st+1) = 3 · ns + 2nb + nhb − log10(cyc). (3)

As the order of precision for different types of intervals is: singleton >
bounded > half bounded interval, the reward function in (3) weighs their num-
bers by 3, 2, 1. The reward function in (3) favors both high performance and
precision. It also ensures that the precision part (3 ·ns + 2nb +nhb) has a similar
magnitude range as the performance part (log10(cyc))2.

Q-function. As mentioned before, we approximate the Q-function by a linear
function (1). We define binary feature functions φijk for each (state, action) pair.
φijk(s, a) = 1 if the tuple s(i) lies in j-th bucket and action a = ak

φijk(s, a) = 1 ⇐⇒ s(i) = j and a = ak (4)

The Q-function is a linear combination of state action features φijk

Q(s, a) =

9∑
i=1

ni∑
j=1

36∑
k=1

θijk · φijk(s, a). (5)

Q-learning. During the training phase, we are given a dataset of programs
D and we use Q-LEARN from Algorithm 1 on each program in D to perform
Q-learning. Q-learning is performed with input parameters instantiated as ex-
plained above and summarized in Table 3. Each episode consists of a run of
Polyhedra analysis on a benchmark in D. We run the analysis multiple times on
each program in D and update the Q-function after each join by calling Q-LEARN.

A Q-function is typically learned using an ε-greedy policy [24] where the
agent takes greedy actions by exploiting the current Q-estimates while also ex-
ploring randomly. The policy requires initial random exploration to learn good

1 A natural measure of precision is the volume of P1 t P2. However, calculating it is
very expensive and P1 t P2 is often unbounded.

2 The log is used since the join has exponential complexity.
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Table 3. Instantiation of Q-learning to Polyhedra static analysis.

RL concept Polyhedra Analysis Instantiation

Agent Polyhedra analysis
State s ∈ S As described in Table 2
Action a ∈ A Tuple (th, r algo, m algo)
Reward function r Shown in (3)
Feature φ Defined in (4)
Q-function Q-function from (5)

Q-estimates that can be later exploited. This is infeasible for the Polyhedra anal-
ysis as a typical episode contains thousands of join calls. Therefore, we generate
actions for Q-learning by exploiting the optimal policy for precision (which al-
ways selects the precise join) and explore performance by choosing a random
approximate join: both with a probability of 0.53.

Formally, the action at := p(st) selected in state st during learning is given
by at = (th, r algo, m algo) where

th =

{
rand() % 4+1 with probability 0.5

min(4, (
∑|B|

i=1 |Xk|)/5) with probability 0.5
,

r algo = rand() % 3 + 1,m algo = rand() % 3 + 1.

(6)

Obtaining the learned policy. After learning over the dataset D, the
learned approximating join transformer in state st chooses an action according
to (2) by selecting the maximal value over all actions. The value of th = 1, 2, 3, 4
is decoded as threshold = 5, 10, 15, 20 respectively.

5 Experimental Evaluation

We implemented our approach in the form of a C-library for Polyhedra analysis,
called Poly-RL. We compare the performance and precision of Poly-RL against
the state-of-the-art ELINA [1], which uses online decomposition for Polyhedra
analysis without losing precision. In addition, we implemented two Polyhedra
analysis approximations (baselines) based on the following heuristics:
– Poly-Fixed: uses a fixed strategy based on the results of Q-learning. Namely,

we selected the threshold, split and merge algorithm most frequently chosen
by our (adaptive) learned policy during testing.

– Poly-Init: uses an approximate join with probability 0.5 based on (6).
All Polyhedra implementations use 64-bit integers to encode rational num-

bers. In the case of overflow, the corresponding polyhedron is set to top.

3 We also tried exploitation probabilities of 0.7 and 0.9, however the resulting policies
had suboptimal performance during testing due to limited exploration.
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Experimental setup. All our experiments including learning the param-
eters θ for the Q-function and the evaluation of the learned policy on unseen
benchmarks were carried out on a 2.13 GHz Intel Xeon E7- 4830 Haswell CPU
with 24 MB L3 cache and 256 GB memory. All Polyhedra implementations were
compiled with gcc 5.4.0 using the flags -O3 -m64 -march=native.

Analyzer. For both learning and evaluation, we used the crab-llvm analyzer
for C-programs, part of the larger SeaHorn [7] verification framework. The an-
alyzer performs intra-procedural analysis of llvm-bitcode to generate Polyhedra
invariants which can be used for verifying assertions using an SMT solver [11].

Benchmarks. SVCOMP [3] contains thousands of challenging benchmarks
in different categories suited for different kinds of analysis. We chose the Linux
Device Drivers (LD) category, known to be challenging for Polyhedra analysis
[21] as to prove properties in these programs one requires Polyhedra invariants
(and not say Octagon invariants which are weaker).

Training Dataset. We chose 70 large benchmarks for Q-learning. We ran
each benchmark a thousand times over a period of three days to generate sample
traces of Polyhedra analysis containing thousands of calls to the join transformer.
We set a timeout of 5 minutes per run and discarded incomplete traces in case
of a timeout. In total, we performed Q-learning over 110811 traces.

Evaluation Method. For evaluating the effectiveness of our learned policy,
we then chose benchmarks based on the following criteria:
– No overfitting: the benchmark was not used for learning the policy.
– Challenging: ELINA takes ≥ 5 seconds on the benchmark.
– Fair: there is no integer overflow in the expensive functions in the benchmark.

Because in the case of an overflow, the polyhedron is set to top resulting in
a trivial fixpoint at no cost and thus in a speedup that is due to overflow.

Based on these criteria, we found 11 benchmarks on which we present our results.
We used a timeout of 1 hour and memory limit of 100 GB for our experiments.

Inspecting the learned policy. Our learned policy chooses in the major-
ity of cases threshold=20, the binary weighted constraint removal algorithm for
splitting, and the merge smallest first algorithm for merging. Poly-Fixed always
uses these values for defining an approximate transformer, i.e., it follows a fixed
strategy. Our experimental results show that following this fixed strategy results
in suboptimal performance compared to our learned policy that makes adaptive,
context-sensitive decisions to improve performance.

Results. We measure the precision as a fraction of program points at which
the Polyhedra invariants generated by approximate analysis are semantically the
same or stronger than the ones generated by ELINA. This is a less biased and
more challenging measure than the number of discharged assertions [4, 18, 19]
where one can write weak assertions that even a weaker domain can prove.

Table 4 shows the number of program points4, timings (in seconds), and the
precision (in %) of Poly-RL, Poly-Fixed, and Poly-Init w.r.t. ELINA on all 11
benchmarks. In the table, the entry TO (MO) means that the analysis did not

4 The benchmarks contain up to 50K LOC but SeaHorn encodes each basic block as
one program point, thus the number of points in Table 4 is significantly reduced.
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Table 4. Timings (seconds) and precision of approximations (%) w.r.t. ELINA.

Benchmark #Program ELINA Poly-RL Poly-Fixed Poly-Init

Points time time precision time precision time precision

wireless airo 2372 877 6.6 100 6.7 100 5.2 74
net ppp 680 2220 9.1 87 TO 34 7.7 55
mfd sm501 369 1596 3.1 97 1421 97 2 64
ideapad laptop 461 172 2.9 100 157 100 MO 41
pata legacy 262 41 2.8 41 2.5 41 MO 27
usb ohci 1520 22 2.9 100 34 100 MO 50
usb gadget 1843 66 37 60 35 60 TO 40
wireless b43 3226 19 13 66 TO 28 83 34
lustre llite 211 5.7 4.9 98 5.4 98 6.1 54
usb cx231xx 4752 7.3 3.9 ≈100 3.7 ≈100 3.9 94
netfilter ipvs 5238 20 17 ≈100 9.8 ≈100 11 94

finish within 1 hour (exceeded the memory limit). For an incomplete analysis,
we compute the precision by comparing program points for which the incomplete
analysis can produce invariants.

Poly-RL vs ELINA. In Table 4, Poly-RL obtains > 7x speed-up over
ELINA on 6 of the 11 benchmarks with a maximum of 515x speedup for the
mfd sm501 benchmark. It also obtains the same or stronger invariants on ≥
87% of program points on 8 benchmarks. Note that Poly-RL obtains both large
speedups and the same invariants at all program points on 3 benchmarks.

The widening transformer removes many constraints produced by the precise
join transformer from ELINA which allows Poly-RL to obtain the same invari-
ants as ELINA despite the loss of precision during join in most cases. Poly-RL
produces large number of non-comparable fixpoints on 3 benchmarks in Table 4
due to non-monotonic join transformers.

We also tested Poly-RL on 17 benchmarks from the product lines category.
ELINA did not finish within an hour on any of these benchmarks whereas Poly-
RL finished within 1 second. Poly-RL had 100% precision on the subset of pro-
gram points at which ELINA produces invariants. With Poly-RL, SeaHorn suc-
cessfully discharged the assertions. We did not include these results in Table 4
as the precision w.r.t. ELINA cannot be completely compared.

Poly-RL vs Poly-Fixed. Poly-Fixed is never significantly more precise than
Poly-RL in Table 4. Poly-Fixed is faster than Poly-RL on 4 benchmarks, however
the speedups are small. Poly-Fixed is slower than ELINA on 3 benchmarks
and times out on 2 of these. This is due to the overhead of the binary weight
constraints removal algorithm and the exponential number of generators in the
output.

Poly-RL vs Poly-Init. From (6), Poly-Init takes random actions and thus
the quality of its result varies depending on the run. Table 4 shows the results
on a sample run. Poly-RL is more precise than Poly-Init on all benchmarks in
Table 4. Poly-Init also does not finish on 4 benchmarks.
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6 Related Work

Our work can be seen as part of the general research direction on parametric
program analysis [9, 18, 14, 19, 4], where one tunes the precision and cost of the
analysis by adapting it to the analyzed program. The main difference is that prior
approaches fix the learning parameters for a given program while our method
is adaptive and can select parameters dynamically based on the abstract states
encountered during analysis, yielding better cost/precision tradeoffs. Further,
prior work measures precision by the number of assertions proved whereas we
target the stronger notion of fixpoint equivalence.

The work of [20] and [21] improve the performance of Octagon and Polyhe-
dra domain analysis respectively based on online decomposition without losing
precision. We compared against [21] in this paper. As our results suggest, the
performance of Polyhedra analysis can be significantly improved with RL. We
believe that our approach can be easily extended to the Octagon domain for
achieving speedups over the work of [20] as the idea of online decomposition
applies to all sub-polyhedra domains [22].

Reinforcement learning based on linear function approximation of the Q-
function has been applied to learn branching rules for SAT solvers in [13].
The learned policies achieve performance similar to those of the best branching
rules. We believe that more powerful techniques for RL such as deep Q-networks
(DQN) [17] or double Q-learning [8] can be investigated to potentially improve
the quality of results produced by our approach.

7 Conclusion

Polyhedra analysis is notoriously expensive and has worst-case exponential com-
plexity. We showed how to gain significant speedups by adaptively trading preci-
sion for performance during analysis, using an automatically learned policy. Two
key insights underlie our approach. First, we identify reinforcement learning as a
conceptual match to the learning problem at hand: deciding which transformers
to select at each analysis step so to achieve the eventual goal of high precision
and fast convergence to fixpoint. Second, we build on the concept of online de-
composition, and offer an effective method to directly translate precision loss
into significant speed-ups. Our work focused on polyhedra analysis for which we
provide a complete implementation and evaluation. We believe the approach can
be instantiated to other forms of static analysis in future work.
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